
Expanding Blue Chameleon

November 14, 2013

2

Contents

A The OSL Scripting Language 7
A.1 Writing and running OSL scripts . 7
A.2 Syntax overview . 7

A.2.1 Commands . 7
A.2.2 Functions . 8
A.2.3 HTML code . 8
A.2.4 Comments . 9

A.3 OSL variables . 9
A.3.1 Managing variables . 9

A.3.1.1 Declaring and assigning 9
A.3.1.2 Test of existence . 9
A.3.1.3 Local environments . 9
A.3.1.4 Deleting variables . 9

A.3.2 Types . 10
A.3.2.1 Casting . 10

A.3.3 Naming . 11
A.3.4 Evaluating variables . 11
A.3.5 Predefined variables . 11

A.4 Including : script files, procedures . 11
A.4.1 Calling other files . 12

A.4.1.1 Passing variables to a called script 12
A.4.1.2 Persistence of variables as used in a called script 12

A.4.2 Calling procedures . 13
A.4.2.1 Calling procedures from other files 13

A.4.3 Including other files . 13
A.5 Programming instructions . 13

A.5.1 Tests . 13
A.5.2 Loops . 14

A.5.2.1 Loop counter . 15
A.6 OSL and SQL . 16

A.6.1 Performing a SQL command . 16
A.6.1.1 Result-less queries . 16
A.6.1.2 Queries with results . 16

A.6.2 Displaying contents of a SQL table 16
A.6.3 SQL transactions . 17

A.6.3.1 Disabling autocommitting 18

3

A.6.4 Useful things to know . 18
A.7 Use of files . 18

A.7.1 Creating and/or opening a file . 18
A.7.2 Reading from a file . 19
A.7.3 Writing into a file . 19
A.7.4 Closing a file . 19

A.8 Various mathematical functions . 19
A.9 Date and Time functions . 20

A.9.1 Getting current date/time . 20
A.9.2 Getting any date/time . 21
A.9.3 Functions using Unix time reference 22
A.9.4 Functions using Serial date/time 23

A.10 String functions . 23
A.10.1 Declaring, concatenating . 24
A.10.2 Tests on a single string . 24
A.10.3 Extracting parts of a string . 24

A.10.3.1 To and from any position 24
A.10.3.2 To and from any character 25

A.10.4 Comparison of two strings . 25
A.10.4.1 Equality . 25
A.10.4.2 Containment . 25

A.10.5 String manipulations functions . 25
A.10.5.1 Shifting to lower-/uppercase 26
A.10.5.2 Simplifying strings . 26
A.10.5.3 Replacing parts of a string 26

A.10.6 Use of strings with special characters 27
A.10.6.1 In SQL queries . 27
A.10.6.2 For display on the screen 27
A.10.6.3 For Javascript . 27
A.10.6.4 For URLs . 27
A.10.6.5 Various string functions 28

A.11 MAIL functions . 28

B A guide to developing your Blue Chameleon Add-On 29
B.1 The structure of a Blue Chameleon Add-on 29

B.1.1 How .phs pages are interpreted and displayed 30
B.2 Basics of add-on developing : how it is integrated 30

B.2.1 Compiling your .phs files . 31
B.2.2 Uploading your library and files 31
B.2.3 Registering your add-on . 31

B.2.3.1 Setting a new menu script and a menu element for the
add-on . 32

B.2.3.2 Setting the add-on’s access rights 33
B.3 Basics of add-on developing : how to organize your .phs scripts 34

B.3.1 "oss-" scripts : the basics . 35
B.3.1.1 ossModuleRegister.phs 35

4

B.3.1.2 ossUserConfig.phs, ossUserModify.phs 37
B.3.2 Headers and footers . 37
B.3.3 Languages . 38

B.4 Variables, forms, scripts . 39
B.4.1 CGI variables . 39
B.4.2 Accessing names and values of CGI variables 40
B.4.3 CGI variables and HTML forms . 40

B.4.3.1 Creating CGI variables in a form 41
B.4.3.2 Form calling another script 41

B.4.4 Conserving variables from one script to another 42
B.4.5 CGI variables and javascript functions 42
B.4.6 Incorporating other files . 42

B.5 Setting aimed user rights for the add-on 44
B.5.1 Getting the current (Menu Script) user rights inside a script . . . 44

B.5.1.1 User rights values . 44
B.5.2 Fine-tuning the access to add-on’s features 45

B.5.2.1 Access to elements of a script 45
B.5.2.2 Access to a whole script 47

B.5.3 Making custom library user rights for your add-on 47
B.5.3.1 Building your own ossUserConfig.phs script 47
B.5.3.2 Building the corresponding ossUserModify.phs script . 48
B.5.3.3 These two scripts in force 50
B.5.3.4 Incorporating your add-on custom user rights in scripts . 50

B.6 Importing information on Shop data . 52
B.6.1 Importing user and user group information 52

B.6.1.1 List of users . 52
B.6.1.1.1 Examples of use 53

B.6.1.2 Information on users . 53
B.6.1.2.1 Example of use 54

B.6.1.3 List of user groups . 54
B.6.1.3.1 Example of use 54

B.6.1.4 Information on user groups 54
B.6.1.4.1 Example of use 55

B.6.2 Information on Merchant . 55
B.6.2.1 Example of use . 55

B.6.3 Information on clients . 55
B.6.3.1 Example of use . 56

B.6.4 Information on subscriptions . 57
B.6.4.1 Example of use . 58

B.6.5 Information on orders . 58
B.6.5.1 Example of use . 59

B.6.6 Information on invoices . 59
B.6.6.1 Example of use . 60

B.7 Advanced developing : custom scripts . 61
B.7.1 Adding a custom script . 61
B.7.2 Subscription-related custom scripts 62

5

B.7.2.1 Attaching scripts to a subscription article - Effects . . . 62
B.7.2.2 Developing subscription custom scripts : "Display" example 64
B.7.2.3 Subscription events : an example 66

B.8 Advanced developing : a custom event control 69
B.8.0.1 Content of a click-link 71

B.9 Advanced developing : using Blue Chameleon’s mail gate 72
B.10 Communication add-on to add-on, and shop to add-on : the oss- scripts . 74

B.10.1 Registering oss- scripts . 74
B.10.2 Recording objects inside an add-on 75
B.10.3 Integrating properties in an add-on 75

B.10.3.1 Registering the properties to be used 76
B.10.3.2 Creating the properties 77
B.10.3.3 Using properties inside the add-on 77

B.10.3.3.1 Getting the list of properties 77
B.10.3.3.2 Creating a property value 78
B.10.3.3.3 Removing a property value 78
B.10.3.3.4 Setting a property value 78
B.10.3.3.5 Fetching a property value 78

B.10.4 Object management-related scripts 79
B.10.4.1 Example : link to view an object, featuring object’s name 79

B.10.5 Searching for an object . 80
B.10.5.1 On all libraries’ objects 80
B.10.5.2 On a specific library, or specific library’s object type . . 81

B.10.6 User-related oss- scripts . 81
B.10.7 Article-related oss- scripts . 81
B.10.8 Client-related oss- script . 82
B.10.9 External system-related scripts 83

B.10.9.1 Examples of implementation 83
B.10.9.1.1 ossExportCount.phs 83
B.10.9.1.2 ossExportExternal.phs 84
B.10.9.1.3 ossExportValidate.phs 85
B.10.9.1.4 ossExportCancel.phs 85

B.10.10Other shop-related oss- scripts . 85

C Developing your Front-Office with Blue Chameleon 87
C.1 What a Front-Office (FO) is . 87

C.1.1 Static pages . 87
C.1.1.1 Dynamic pages . 88

C.2 How a FO page can be ideally structured 88
C.3 Header and footer structure . 90

C.3.1 A Front-Office Header . 90
C.3.2 A Front-Office Footer . 91

C.4 Blue Chameleon’s available Front-Office scripts 91
C.5 Client’s interface . 91
C.6 Advanced FO developing . 91

C.6.1 Is a client connected ? . 91

6

Appendix A

The OSL Scripting Language

OSL is a scripting language originally developed for building Blue Chameleon ; its high
versatility, as well as its ease at incorporating and handling other languages such as HTML
and SQL, make it the first choice whenever you may need to develop any web-based ap-
plication - no matter how complex - dealing with database processing and displaying.

Reference Web Page : http://www.inc.lu/OSL/script.htm

A.1 Writing and running OSL scripts
OSL scripts are written into .phs files. They can be typed in any text editor, preferably
with HTML highlighting.

.phs files are run automatically whenever called by Blue Chameleon or by another
.phs file.

A.2 Syntax overview

A.2.1 Commands

OSL is mainly built around commands, which consist in a COMMAND name (always in
uppercase) followed (or not) by one or several arguments, sandwiched between opening
and closing guillemots «...».

For instance :

«SYSTEM ECHO "Hello world !"»

which outputs string "Hello world !" on the system.

Commands can also be made of an opening and a closing tag :

«IF <condition >»
[Do stuff]

«ENDIF»

7

http://www.inc.lu/OSL/script.htm

A.2.2 Functions

OSL also makes use of functions, which aim is to achieve various operations on variables
such as string manipulations, date operations... A function name is always in lowercase,
preceded by @ and followed by its argument(s) between parentheses. If function requires
several arguments, they are separated by semicolons. For instance, this call :

«VAR NEW _Trunc=@substr("Hello world"; 6; 5)

which stores into variable _Trunc 6 characters from string "Hello world" starting
from the 5th position.

It is to note that any result of a function call can be assessed to a variable of the right
type : myDouble=@atof("12.1") stores for example 12.1 into double myDouble.

To evaluate and display any function result, command EXPR is used :

«EXPR @atof("12.1")»

which outputs 12.1. Or even simpler, for the same result :

«=@atof("12.1")»

A.2.3 HTML code

HTML code is used like in any HTML editor and it is possible to use commands and functions
within it, as featured in Fig.A.1.

Figure A.1: HTML code and OSL commands and functions can be mixed in a
very straightforward way.

8

A.2.4 Comments

They can be added anywhere via

«* Now processing default case... *»

A.3 OSL variables

A.3.1 Managing variables

A.3.1.1 Declaring and assigning

Variables can be declared anywhere in a .phs file with commands VAR NEW for local
variables and LET for global variables ; for both, values can be assigned right at the
declaring. For instance :

«VAR NEW dMyDouble=200.0»

«LET _MyString="A global string..."»

It is to note that LET is also used to assign a value to a pre-existing variable, whether
local or global.

A.3.1.2 Test of existence

Before using a variable in a script where it is not sure if it has been transmitted as a
CGI or not, function @exists("<variable>") is useful to test whether this variable does
exist, and if not, initialize it :

«IF @exists("_DisplayAll")==0»
«VAR NEW _DisplayAll=0»

«ENDIF»

A.3.1.3 Local environments

Between the «VAR LOCAL» and «VAR ENDLOCAL» tags, one can define an environment for
local variables, even if those already existed before. If so, at the end of this environment,
such an already-existing variable will get its former value back.

A.3.1.4 Deleting variables

If needed, a variable <var> can be deleted through «VAR DELETE <var>».

9

A.3.2 Types

Declaring a variable’s type is not mandatory ; however, it can be done through

«VAR NEW [double]dMyDouble=200.0»

In OSL the following types are used :

• int for integers ;

• int64 for 64-bit integers ;

• double for double-precision floating-points numbers ;

• string for strings, always declared/assigned between double quotes : "...".

In this documentation, variables are represented as <value:type>.

A.3.2.1 Casting

Several functions exist to cast variables :

• @atoi(<value:string>) converts a string to the integer value ; if unsure of the vari-
able type - string or integer -, function @toi(<value:string or integer>) might
rather be used. This latter function must be for instance called before using a in-
teger CGI variable, as the previous URL redirection (...&_intCGIVar=25&...)
has cast it into a string :

«LET _intCGIVar=@toi(_intCGIVar)»

• @atof(<value:string>) converts a string to the floating-point value ;

• @itoa(<value:int>) converts an integer to a string ; if unsure of the variable type
- integer or string -, function @toa(<value:integer or string>) might rather be
used.

This example

«VAR NEW _fiveString="5"»
«VAR NEW _fiveInt=5»
Converting _fiveString to integer : «=@toi(_fiveString)+1»
Converting _fiveInt to string : «=@toa(_fiveInt)+"+1"»

will then output

Converting _fiveString to integer : 6
Converting _fiveInt to string : 5+1

10

A.3.3 Naming

While the naming of OSL variables is free, it is advised to follow some simple guidelines
in order to distinguish at a glance what is the type of a variable :

• integers can be named with a ’i’ or ’id’ prefix (e.g. iZipCode, idClient) ;

• doubles can be named with a ’d’ prefix (e.g. dOrderAmount) ;

• strings can be named with a ’az’ prefix (e.g. azClientFirstName).

Most usually, an underscore is put before a variable’s name when SQL queries are in-
volved (A.6) ; e.g., so that variable _idClient is distinguished from field name idClient.

A.3.4 Evaluating variables

There are two ways of evaluating a variable <var> : either by command EXPR or by
placing it between guillemots : «<var>».

When <var> is already in a «...» context (for instance in «IF <var>==1»), there is
no need to use those ; otherwise, anytime when <var> is outside those and needs to be
evaluated, guillemots are used, for instance :

<TABLE border=«MyOwnBorder» cellpadding=2 cellspacing=0>

A.3.5 Predefined variables

There exists various system variables that are called to give information about statuses,
success or failure of operations... Most of them are dedicated to OSL’s SQL functions (A.6).

All the names of the predefined variables are in uppercase, sandwiched between two
#. They cannot be assigned any value. For example,

«EXPR #SQLSTATUS#»

or

«VAR NEW _Succ=#SQLSTATUS#»

outputs/stores whether the last SQL operation has succeeded (returning 1) or failed
(returning 0).

A.4 Including : script files, procedures

As the length of a .phs file can grow rapidly, it is clever to split tasks into smaller files
and procedures. Those can then be called anywhere, with certain limits.

11

A.4.1 Calling other files

The «INCLUDE <scriptfile>» command simply calls the contents of file <scriptfile>.
If this file happens to RETURN a value, it can be assessed to a variable of the calling file
by precising its name in the command :

It is to note that whenever RETURN is called, the script is exited.

A.4.1.1 Passing variables to a called script

It is possible to pass a list of variables to be used in the called script, for instance :

«INCLUDE dMonthlyFee=MonthlyFee.phs;_azMonth="February";_azStatus="VIP"»

There, the MonthlyFee.phs script has two string variables _azMonth and _azStatus
that are initialized to fixed values "February" and "VIP" and used to perform calcula-
tions accordingly, thus returning a result dMonthlyFee.

If the values to be given are variables themselves, they are passed with guillemots,
unless it is a string ; for instance :

«INCLUDE modifyName.phs;_ClientId=«_idClient»;_NewName=_ThisName»

In this example, integer value _idClient and string value _ThisName serve as to assess
values to variables _idClient and _NewName in script modifyName.phs. Operations there
(for instance a SQL table update) will be performed using those two imputed values.

A.4.1.2 Persistence of variables as used in a called script

It is to note that, if some variables as used in a called script are initialized before the call,
they are kept after the call. It is for instance used when getting user-related information
(B.6.1) :

«VAR NEW _UserRealName=""»
«VAR NEW _UserFirstName=""»

«INCLUDE
ossbo:OSSUserInfo.phs;_MerchantId=«_MerchantId»;_UserId=«#SQLUSERID#»»

Current user : «_UserFirstName» «_UserRealName»

12

A.4.2 Calling procedures

A procedure, in the OSL context, is a list of instructions placed between the PROC
<procedure_name> and /PROC tags. It is then simply executed by command line

«INCLUDE <procedure_name>»

.

A.4.2.1 Calling procedures from other files

The example above supposes that the called procedure is defined in the same file as
the calling script. It is also possible to call a procedure belonging to another script by
precising its name (preceeded by #) right after called script’s name :

A.4.3 Including other files

What preceded dealt with the including of .phs files ; it can be said that other files can
be included can be included, in particular HTML files, with the INCLUDE command, for
example :

«INCLUDEFILE HeaderLayout.html»

Command LIBRARY fills the same role.

Refer to The structure of a Blue Chameleon Add-on (B.1) to know where to upload
your external files.

A.5 Programming instructions
OSL handles usual programming instructions such as variable tests and loops.

A.5.1 Tests

Command «IF <condition>», eventually terminated by an ENDIF, is used to perform
instructions according the veracity of <condition>. It can be enriched with an ELSE
followed by other instructions to perform if <condition> was false, as well as an ELSEIF
stating a new condition to test for :

13

«IF <condition>»
<instructions>

«ELSE»
<other instructions>

«ENDIF»

«IF <condition1>»
<instructions1>

«ELSEIF <condition2>»
<instructions2>

«ELSEIF <condition3>»
<instructions3>

«ENDIF»

An ELSEIF command may be followed by an ELSE one, but not the other way around
(which would be equivalent to two consecutive elses).

The following table sums up the OSL syntax of numerical and logical tests :

Test OSL syntax
A equal to B A==B

A different from B A<>B
A greater than B A>B
A less than B A<B

A greater than or equal to B A >= B
A lesser than or equal to B A <= B

A AND B A && B
A OR B A || B

A.5.2 Loops

A while-type loop can be implemented in the following way :

«WHILE»
<instructions>

«/WHILE <condition>»

Instructions between the two tags are executed as long as condition is true. The
following example, where instructions are repeated N times, then shows how a for-loop
can be implemented :

«LET _Counter=0»
«WHILE»

<instructions that may modify _Counter’s value...>
«LET _Counter=_Counter+1»

«/WHILE _Counter<N»

14

Another way of performing a loop with defined repetitions is using the SQLREPEAT
command, for example :

«SQLREPEAT»
<instructions>

«/SQLREPEAT <begin> ; <end>»

will perform instructions end-begin+1 times.

The BREAK command can be used to escape the WHILE and SQLREPEAT loops. It is
useful for instance in long loops where just one test is needed to have confirmation that
some test is fulfilled :

«VAR NEW _Found=0»
«SQLREPEAT»

<some instructions to fetch a test value _TestValue, for instance
the result of a SQL query using #SQLREPEAT# value>
«IF _TestValue==_AimedValue»
«LET _Found=#SQLREPEAT#»
«BREAK»

«ENDIF»
«/SQLREPEAT 1;10000»

There, the SQLREPEAT loop will stop some as soon as the _AimedValue is found, also
keeping where it found it (the #SQLREPEAT# value as stored in _Found, now not null
anymore).

A.5.2.1 Loop counter

The predefined variable #SQLREPEAT# can be used to access the value of the loop counter
which :

• in case of a WHILE loop, is initialized at 1 at the beginning of the loop and is
incremented by one at each repetition ;

• in case of a SQLREPEAT loop, is initialized at <begin> at the beginning of the loop
and is incremented by one until reaching <end>.

The loop counter predefined variable may be useful to implement a for-loop, using
condition FOREVER (which creates a dead-end loop) along with the BREAK command :

«SQLREPEAT»
<instructions>
«IF #SQLREPEAT#==10»
«BREAK»
«ENDIF»

«/SQLREPEAT FOREVER»

15

A.6 OSL and SQL

One of OSL’s greatest features lies in its straightforward way to handle databases and
tables ; indeed, varied functions dedicated to SQL operating fulfill all needs associated
with database handling.

A.6.1 Performing a SQL command

A.6.1.1 Result-less queries

A SQL query without expected result (such as an insert) can be simply done via OSL’s
SQL command, for instance :

«SQL insert into COUNTRIES values (15,’Finland’)»

The success or failure of lastly done SQL command can be accessed by evaluating
predefined variable #SQLSTATUS#, equal either to 1 or 0.

A.6.1.2 Queries with results

According to the expected result of the SQL query to execute - integer, double or string
-, three commands SQLEXEC INT, SQLEXEC DOUBLE or SQLEXEC STRING are available.
For example,

«SQLEXEC DOUBLE dPrice=select dItemPrice from ITEMS where idItem=2»
The price of the Arrow is $ «dPrice».

outputs .

A.6.2 Displaying contents of a SQL table

Showing the contents of a table is a very usual operation that OSL performs through com-
mand tags «SQLOUTPUT» and «/SQLOUTPUT <SQL select query>». In between those
tags are placed the names of the columns to display (always between guillemots) and the
SQL can be followed of two optional numbers.

For instance, Fig.A.2 shows how two columns of a table are displayed ; the ’0’ after
the SQL query specifies that no result records have to be skipped while the ’3’ specifies
that three (at maximum) records have to be given.

In order for all records to be output, /SQLOUTPUT select idItem, azItem from
ITEMS (i.e., without anything after the query) is used.

The «SQLOUTPUT» and «/SQLOUTPUT <SQL select query>» constitute a loop than
can be conditionally exited thanks to the «BREAK» line :

16

Figure A.2: Dropping the three first rows of the idItem and azItem columns
of the ITEMS table.

«VAR NEW _Found=""»
«SQLOUTPUT»

«IF dItemPrice>100.0»
«LET _Found=azItem»
«BREAK»

«ENDIF»
«/SQLOUTPUT select azItem, dItemPrice from ITEMS order by dItemPrice

asc»

«IF _Found<>""»
The cheapest item above 100.0 is «_Found»

«ELSE»
No item above 100.0 !

«ENDIF»

In this example, records consisting in item names and prices are processed with as-
cending dItemPrice values ; as soon as a price is over 100.0 (if ever), item name is
stored in variable _Found (now not an empty string anymore) and SQLOUTPUT loop, now
pointless, is exited.

A.6.3 SQL transactions

OSL of course handles the concept of SQL transactions with the «SQLSTATUS TRANSACTION
BEGIN» and «SQLSTATUS TRANSACTION END» commands, between which «SQL ...» com-
mands are placed. For instance,

«SQLSTATUS TRANSACTION BEGIN»
«SQL delete from ITEMS where idItem=«idOut»»
«SQL insert into OUTDATED_ITEMS values («idOut»,«azOut»,«dOut»)»
«VAR NEW _TransacSuccess=#TRANSACTIONSTATUS#»

«SQLSTATUS TRANSACTION END»

ensures that the two SQL commands in the middle are both successful before being
committed ; otherwise they will be rolled back. In the former case, the #TRANSACTIONSTATUS#

17

predefined variable as estimated just before the end is equal to 1, and to 0 in the latter.

A rollback can also be forced by command line «SQLSTATUS ROLLBACK».

A.6.3.1 Disabling autocommitting

With command line «SQLSTATUS AUTOCOMMIT OFF», it is possible to disable the commit-
ting unless system encounters a SQLSTATUS TRANSACTION END ; otherwise, a rollback will
be done.

A.6.4 Useful things to know

SQL queries need most of the times some of the current script variables to be used ; for
instance,

«SQL insert into COUNTRIES values («_CountryID»,’«_CountryName»’)»

is the way of inserting into the COUNTRIES table the numerical value as stored in
_CountryID and the string as stored in _CountryName. In the case of the string, notice
the guillemots within the single quotes.

A.7 Use of files
During the execution of a script, a non-script file may have to be opened or written to.

A.7.1 Creating and/or opening a file

Command FILE CREATE allows to create a file, for instance

«FILE CREATE Dump.txt»

Once created, this file is opened by

«FILE OPEN <mode> <filename>»

where <mode> is chosen amongst these following options :

• READ : for a read-only file ;

• READTEXT : for a read-only text file ;

• WRITE : for a file that is to be read and written to ;

• WRITETEXT : for a text file that is to be read and written to ;

• APPEND : for a file that is to be read and appended to ;

• APPENDTEXT : for a text file that is to be read and appended to.

Also, if file did not exist, command FILE OPEN creates it.

18

A.7.2 Reading from a file

Once opened, a file does not need to be called by name to be read from.

There exist different ways of reading a file :

• command line «FILE READ 20 Container», for instance, reads the next 20 char-
acters from the currently opened file and stores them in variable Container ;

• command line «FILE READLINE Container», on the other hand reads and stores
into Container the current line of the file ;

• command line «FILE READFILE Container» reads until the end of the file, storing
it in variable Container.

The success of these three operations is stored into predefined variable #SQLSTATUS#.

A.7.3 Writing into a file

Similarly as for reading, once the file is opened, its name does not need to be mentioned
for the <data> to be written to it.

The following writing operations are possible :

• command line «FILE WRITE <data>» writes the value of <data> to the currently
opened file ;

• command «FILE WRITETEXT "..."» does the same, but using text only, to be put
in quotes ;

• command «FILE WRITESTRING <data>» can also be used to write <data> as a
string ;

• command «FILE WRITELINE <data>» is similar to FILE WRITE but also adds a line
end ;

• a line end alone, without added data, can be also achieved with «FILE WRITENEWLINE».

The success of these writing operations is stored into predefined variable #SQLSTATUS#.

A.7.4 Closing a file

The command line «FILE CLOSE» is enough to close the currently opened file.

A.8 Various mathematical functions

Table A.1 lists the functions that OSL provides for basic number operation.

19

Table A.1: Various mathematical functions

@abs(<val:integer>)
returns the absolute value of val
«=@abs(-10)» → 10

@int(<val:double>)
returns the integer value of val
«=@int(-3.14)» → 3

@random(<val:double>)
returns a random integer number between 0 and val
«=@random(1000)» → 698

@round(<number:double>; <decimals:integer>)
returns number as rounded to decimals position(s)
«=@round(3.14159;2)» → 3.14

A.9 Date and Time functions

OSL handles date and time in these following formats :

• expressed as values of year, month, day, hour, minute and second ;

• using 1/1/1970 (Unix time) as a reference ;

• in Excel "Serial" format.

A.9.1 Getting current date/time

Obtaining current date/time can be performed in various outputs with three argument-
less functions, as shown in Table A.2.

Table A.2: Functions returning the current date/time in various formats :

Functions Output
@today() Serial
@daytime() Number of days elapsed since 1-1-1970
@time() c-time

Examples :
Code Output
«LET Today=@today()»
«Today» 40084.38

«LET cTime=@time()»
«cTime» 1254121956

20

A.9.2 Getting any date/time

As featured in Table A.3, functions @date and @timetime return any date/time given in
days, months, years,... into Serial and c-time date/time.

Table A.3: Functions returning a given date/time in various formats :

Functions Output
@date(<day:integer>; <month:integer>; <year:integer>) Serial
@timetime(<day:integer>; <month:integer>; <year:integer>;
<hour:integer>; <minute:integer>; <second:integer>;) c-time

Examples :
Code Output
«LET Date=@date(22;09;2003)»
«Date» 37886.00

«LET cTime=@timetime(22;09;2003;17;32;00)»
«cTime» 1064244720

21

Table A.4: Date- and Time- converting functions using 1-1-1970 as a refer-
ence, either in days elapsed since or seconds (c-time) :

Functions using days elapsed since 1-1-1970 Output
@daytimeyear Year (1970 -)
@daytimemonth Month (1 - 12)
@daytimeday Day (1 - 31)
@daytimetotime c-time
Functions using a c-time Output
@timestr(<ctime:integer>; <format:integer>) see table A.5
@timeserial Serial
@timeyear Year (1970 -)
@timemonth Month (1 - 12)
@timeday Day (1 - 31)
@timehour Hour (0 - 23)
@timeminute Minute (0 - 59)
@timesecond Second (0 - 59)

Examples :
Code Output
«LET DateStr=@timestr(1064244720;6)»
«DateStr» 22/09/2003

«LET Mnt=@timeminute(1064244720)»
«Mnt» 32

A.9.3 Functions using Unix time reference

Table A.4 features extensively the OSL date and time functions that use the Unix time
reference, with argument either in days elapsed since 1-1-1970 or seconds (c-time).

22

Table A.5: format options for function @timestr(<ctime:integer>;
<format:integer>) :

format Output
1 DMY (e.g. 27/9/2009)
2 MDY
3 YMD
4 DMYHM
5 RFC822
6 DDMMYYYY (e.g. 27/09/2009)
7 MMDDYYYY
8 YYYYMMDD

A.9.4 Functions using Serial date/time

Table A.6 features extensively the OSL functions that use a serial time, to output various
date/time components (corresponding year, month, week,...)

Table A.6: Date- and Time- converting functions using a serial date-time
(double) :

Functions Output
@sqlstrdate SQL format
@year Year (1899 -)
@month Month (1 - 12)
@week Week (1 - 52)
@weekday Weekday (0 - 6 ; 0 : Monday, 1 : Tuesday...)
@day Day (1 - 31)
@hour Hour (0 - 23)
@minute Minute (0 - 59)
@second Second (0 - 59)

Examples :
Code Output
«LET Today=@today()»
«LET Day=@day(Today)»
«LET Month=@month(Today)»
«LET Year=@year(Today)»
«Day» «Month» «Year» 28 9 2009

A.10 String functions

OSL provides various string-related functions.

23

http://www.ietf.org/rfc/rfc0822.txt

A.10.1 Declaring, concatenating

A empty string is declared the following way :

«VAR NEW _NewString="" »

Two (or more) existing strings are simply concatenated via operator ’+’ :

«VAR NEW _String1="Dog"»
«VAR NEW _String2="Cat"»
«VAR NEW _String3=_String1+" & "+_String2»

A.10.2 Tests on a single string

Functions @strlen and @type, operating on a single string, respectively return the length
of the string and its type of variable (returning 0 if variable does not exist, 1 for an integer,
2 for a double, 3 for a string and 4 for a date). For instance:

«=@strlen("Hello world !")» → 13
«=@type("B52")» → 3

A.10.3 Extracting parts of a string

A.10.3.1 To and from any position

Function @substr(string; <offset:integer>; <count:integer>) reads count char-
acters into string from position offset ; count is set to -1 to specify end of string. For
instance :

«=@substr("Hello world !";0;4)» → Hell

24

Table A.7: String extracting functions

@strthis(string; <char:integer>)
returns a copy of string where the first occurrence of char is replaced by a string end :
«=@strthis("Hello World !";111)» → Hell

@strrthis(string; <char:integer>)
returns a copy of string where the last occurrence of char is replaced by a string end :
«=@strrthis("Hello World !";111)» → Hello W

@strnext(string; <char:integer>)
returns the part of string after the first occurrence of char :
«=@strnext("No easy way out";32)» → easy way out

@strrnext(string; <char:integer>)
returns the part of string after the last occurrence of char :
«=@strrnext("No easy way out";32)» → out

A.10.3.2 To and from any character

The four functions @strthis, @strrthis, @strnext and @strrnext all extract a part of
a string based on the search of a character, given as its ASCII decimal value. Table A.7
sums up how they work, with 111 and 32 being the ASCII codes for letter ’o’ and ’Space’.

A.10.4 Comparison of two strings

A.10.4.1 Equality

Testing for equality of two strings _String1 and _String2 is simply done via ’==’ :

«VAR NEW _Equal=0»
«IF _String1==_String2»
«LET _Equal=1»

«ENDIF»

A.10.4.2 Containment

@strstrsearch(string; search_string) looks for the presence of search_string in
string, returning :

• if found, the position of the first occurrence of search_string in string (0 if right
at the beginning of string) ;

• -1 if not found.

For instance :

«=@strstrsearch("Hello world !";"Hell")» → 0

A.10.5 String manipulations functions

These functions act on a string’s contents, in various ways : replacing its contents, chang-
ing it to lower or uppercase...

25

A.10.5.1 Shifting to lower-/uppercase

The shifting of a string from lower- to uppercase and vice-versa is performed by function
@toupper (viz. @tolower). For instance :

«=@toupper("2000 Light-Years From Home")»→ 2000 LIGHT-YEARS FROM
HOME

«=@tolower("2000 Light-Years From Home")»→ 2000 light-years from home

These functions only act on alphabetic characters.

A.10.5.2 Simplifying strings

The aim of the following functions is to remove spaces, separators,... to make string
comparison easier.

• @trim removes spaces at the beginning and end of a string and, inside the string,
removes all consecutive spaces to let just one :

«=@trim(" too much spacing ")» → too much spacing

• @strtoname removes all dots from a string so that it may be used as a variable
name :

«=@strtoname("A.New.Var")» → ANewVar

• @tocompare shifts all of the string’s alphabetic characters to uppercase, removing
accents and eliminating separators such as spaces, dot, commas...

«=@tocompare("6 O’clock, Jo’s Café")» → 6OCLOCKJOSCAFE

• @tosqlcompare is similar to @tocompare, except that the underscore and percent-
age character are conserved :

«=@tosqlcompare("...a 20% bargain")» → A20%BARGAIN

A.10.5.3 Replacing parts of a string

Two functions fulfill replacing tasks for a string, whether of a character by another, or of
a substring by another

• @strreplace(string; <old char:integer>; <new char:integer>) replaces ev-
ery occurrence of old char by new char (both of them given as ASCII) ; for in-
stance, with 100 and 103 being ASCII codes for letters ’d’ and ’g’ :

«=@streplace("Blue drapes";100;103)» → Blue grapes

• @strstrreplace(string; <old char:integer>; <new char:integer>) replaces
every occurrence of old string by new string ; for instance :

«=@strstrreplace("Inflation increase";"in";"de")» → Inflation decrease

26

A.10.6 Use of strings with special characters

A.10.6.1 In SQL queries

If the string to be inserted in a SQL contains special characters (such as the single quote
- which would result in the query failing), the function @atosql() should be used. The
following query is ensured to never fail whatever the value of _CountryName is :

«SQL insert into COUNTRIES values («_CountryID»,’«=@atosql(_CountryName)»’)»

A.10.6.2 For display on the screen

When a string variable belongs to a script called by an Ajax request, display problems
might surface if string contains non-ASCII characters such as letters with diacritics.

To circumvent this, functions @atohtml and @atohtml2 can be used : the former
indeed converts certain caracters (<, >, &) of the string to HTML character sequences
(<, >, &) while the latter transforms all characters into their HTML equivalent,
to be then interpreted by the browser.

In the following example, text as shown through an Ajax request has display issues
which are corrected thanks to @atohtml2 :

This function can be also used in the shorter form «%html;=_MyString» (B.3.3).

A.10.6.3 For Javascript

Should an OSL string be used in a Javascript environment or as an argument for a JS
function call, premature string termination problems will arise if string contains charac-
ters ’ and/or ". To be avoid this, function @atojavascript is to be used as it indeed
prefixes single and double quotes (also backslash) as present in the string with a ’\’.

For instance, «=@atojavascript("Patrick O’Hara")» would output Patrick O\’Hara’.

This function can be also used in the shorter form «%js;=_MyString» (B.3.3).

A.10.6.4 For URLs

When a string variable is used in a URL (as a CGI variable), it might contain non-
functional URL characters such as spaces and ampersands :

27

(...)
«VAR NEW _String="Smith & Wesson"»
«LET _URL=_URL+_String»

To make such strings work properly as URLs, the @atocmd function should be used
: it transforms spaces by the character ’+’ and +, &, " and all caracters above deci-
mal code 127 by their %hh hexadecimal codes. In the example above, doing «VAR NEW
_String=@atocmd(_String)» (after its initializing) will indeed assess to _String the
new value "Smith+%26+Wesson". Function @atocmd2 is similar, except that it trans-
forms spaces into %20.

A.10.6.5 Various string functions

Function @strreverse fully reverses a string :

«=@strreverse("Not a palindrome")» → emordnilap a toN

A.11 MAIL functions
These functions are used by Blue Chameleon when an email is automatically sent, for
instance when an order has been done. Their simplicity makes them fully integrable in a
developed script, as shown at Using Blue Chameleon’s mail gate (B.9).

28

Appendix B

A guide to developing your Blue
Chameleon Add-On

Blue Chameleon brings company management concept to a higher plane by giving you
the power to develop the add-on that suits your needs. You will be able to create your
own screens, forms, data elements... and act on them as a full-fledged part of your Blue
Chameleon account.

The scripting language OSL (see Chapter 1), though better suited to be handled by IT
people already familiar with programming concepts, database manipulation and HTML
layout, still remains simple, straightforward and quick to learn.

B.1 The structure of a Blue Chameleon Add-on

Inside Blue Chameleon, an add-on is made of different components :

• a .phs library, resulting from the compiling (B.2.1) of individual .phs files written
in Blue Chameleon scripting language OSL ;

• files such as html files, Javascript .js files, custom style sheets .css, images...

The .phs library and the other files are to be uploaded (B.2.2) onto their dedicated
directories, respectively called the SysLibHome and the PublisherHome :

SysLibHome :
AddOn.phs → /srv/www/osl/OSS/[YourShopName]/

PublisherHome :
Header.html → /srv/www/htdocs/IncShop/IncModelShop/[YourShopName]/
processStuff.js → /srv/www/htdocs/IncShop/IncModelShop/[YourShopName]/js/
MyOwnStyle.css → /srv/www/htdocs/IncShop/IncModelShop/[YourShopName]/css/
Banner.jpg → /srv/www/htdocs/IncShop/IncModelShop/[YourShopName]/images/

...

29

In the above, [YourShopName] is the alphanumerical, 16-character string featured in
your shop login page URL
(http://www1.inc.lu/IncShop/IncModelShop/[YourShopName]/osslogin.htm).

B.1.1 How .phs pages are interpreted and displayed

The following address displays for instance the "Default.phs" page belonging to a com-
piled MyLibrary library :

http://www1.inc.lu/Scripts/sql.exe?SqlDB=[YourShopName]&Sql=MyLibrary:Default.phs
&xid=123...&Var1=&Var2=...

It is made of the following elements :

• the Blue Chameleon shop server, calling the sql.exe script (which interprets the
OSL language) ;

• a string of CGI variables, amongst which three are essential :

– SqlDB, which identifies your shop ;
– Sql, which is the page that is displayed, always in the form LibraryName:Page.phs ;
– xid, which is an alphanumerical string (automatically generated upon login)

identifying your session.

B.2 Basics of add-on developing : how it is integrated
Generally speaking, as summed up on Fig.B.1,the process of developing your own add-on
will consist in :

• write the .phs files that constitute it (mandatorily including a ossModuleRegister.phs
one, see B.3.1.1) ;

• compile them into a compiled library (AddOn.phs) ;

• upload this library to your shop’s SysLibHome ;

• register your library and create related menu element (this has only to be done the
first time).

For add-on to be registered, it must contain a
ossModuleRegister.phs script (B.3.1.1).

The add-on has to be registered first and inserted as a menu, before being accessible.
After, developing will consist only in generating the library and uploading it.

It is to note that file names (including the .phs extension) should not
be greater than 23 characters.

30

Figure B.1: A single compiled library AddOn.phs is generated and is to be
uploaded unto the SysLibHome.

B.2.1 Compiling your .phs files

All of these files need to be placed in the same directory. Then, the sqllib.cmd (or
sqllib.sh) executable will generate the compiled library AddOn.phs (final name can be
set by modifying executable).

B.2.2 Uploading your library and files

Uploading of compiled library and, if applicable, of other files, is done respectively in the
SysLibHome and PublisherHome directories as cleared up in B.1.

B.2.3 Registering your add-on

Registering your add-on inside your shop - as well as menu-related concerns
- has only to be done once.

Inside the Blue Chameleon environment, the add-on you develop is called a ’custom li-
brary’, which has to be registered as such. The process of doing so is described at Fig.B.2.

It has to be emphasized that the name as entered in the ’Library:’ field must corre-
spond exactly to the uploaded library’s name, minus the .phs extension.

The ’Label:’ can be entered as a multilingual string (B.3.3).

31

Figure B.2: The compiled library AddOn.phs is added.

B.2.3.1 Setting a new menu script and a menu element for the add-on

User rights for menu script management can be set up either at the Modify
User Page or the User Right Page under the element

Script management

Ideally, your add-on would be accessed through the menu. For this to be possible, a
’menu script’ has to be created. It will link to the entry point, which is the page of your
add-on your want to be displayed when accessing it, for instance Default.phs. Fig.B.3
features how a new menu script is added, provided that the custom library has been well
registered as described above.

Figure B.3: This enables to make the new add-on accessible (more precisely,
its Default.phs script) from menu configuration.

It is to note that the "Script file:" as featured there must always be entered this form
: add-on name, colon and script file. The ’Button text:’ can be entered as a multilingual

32

string (B.3.3).

Once created, as shown in Fig.B.4, the add-on name (as typed in the ’Button name:’
field) now appears in the list of available procedures while at the Menu Configuration
context.

Figure B.4: The add-on is indeed now available to be added as a menu
element.

Nonetheless, for the new add-on to appear at the menu (here through),
the menu script user rights to the add-on must be set.

B.2.3.2 Setting the add-on’s access rights

As shown on Fig.B.5, the add-on’s access rights are now featured on the Modify User
Page under [Menu script user rights :]. When they are set sufficiently, the new add-on
can be accessed.

33

Figure B.5: Access user rights for the new add-on, initially set by default to
’None’, are raised up for user Tom and add-on thus becomes accessible.

B.3 Basics of add-on developing : how to organize your
.phs scripts

Fig.B.6 illustrates in a general way how an add-on could be ideally structured. An add-on
is constituted of a "main" .phs file, most conveniently named Default.phs and which
is the entry point when registering the library (B.2.3.1).

As the add-on is developed through time, other script files are created. They might
be called by Default.phs or between each other, by the way of INCLUDEs (A.4.1) and
forms (B.4.3.2).

Also, it is to note that "outer" scripts, especially belonging to the ossbo library, may
have to be called, for inserting header/footer (B.3.2), getting user rights (B.5.1)... ossbo
is Blue Chameleon’s main library.

As for a .phs script itself, it may be composed most conveniently along general
guidelines, as shown in Fig.B.7.

34

Figure B.6: An example of the branching between .phs files in an add-on.

B.3.1 "oss-" scripts : the basics

These are scripts that will be recognized and used by Blue Chameleon to provide vari-
ous things such as the registering of your library (ossModuleRegister.phs, mandatory),
dedicated user rights (ossUserConfig.phs, ossUserModify.phs)...

The oss- scripts that your add-on (or any library, for that matter) has been equipped
with can simply be seen checked as seen in Fig.B.8.

For a new oss- script to be registered, it is necessary to
’recheck custom libraries’ via

.

More about oss- scripts can be found at B.10.

B.3.1.1 ossModuleRegister.phs

This script, which has to be included amongst your set of .phs files, simply consists in
one line :

35

Figure B.7: A .phs file may be composed in this rather practical way.

Figure B.8: oss- scripts that the add-on contains. The presence of
ossModuleRegister.phs is confirmed by the existence of a ’Signature:’.

«RETURN 1003»

"1003" there is an example, any integer over 1000 can be taken. This number is called
the signature of the library and it is used to identify it (see Fig.B.8).

36

B.3.1.2 ossUserConfig.phs, ossUserModify.phs

How to compose these library-right-generating scripts is explained in detail at Making
custom library user rights for your add-on (B.5.3).

B.3.2 Headers and footers

In order to have your add-on displayed in the same style than the rest of Blue Chameleon,
it is advised to include, around the beginning, the "Header.phs" script (belonging to
library ossbo), in the following way :

«VAR NEW _Title="My page title;Mon titre de page;Mein Seitentitel"»
«INCLUDE ossbo:Header.phs;_Title=_Title;_Style="print";»

with :

• _Title being the title you want to give to the page generated by the script, as
displayed in the top of the browser’s window. It can be entered as a multilingual
string (B.3.3) ;

• _Title="print" calling for Blue Chameleon’s usual css style sheet, but it is
possible to use your own, for instance _Style="MyOwnStyle" (provided that a
MyOwnStyle.css has been uploaded to PublisherHome/css).

As for the footer, as included via «INCLUDE ossbo:Footer.phs», it allows to display
the links as featured in Fig.B.9, enabling, for this page :

• to go back to the previous one ;

• to reload it ;

• to print it ;

• to add it as a User Menu link (see Blue Chameleon Documentation, General
Interface Handling, Link management).

These header and footer are to be included in the script only if it displays a
new page ; it is unnecessary to feature them in scripts that do not display anything
on screen, nor in INCLUDE’d scripts.

37

Figure B.9: These four links are enabled by script ossbo:Footer.phs.

B.3.3 Languages

As Blue Chameleon can handle different languages that you enable while at the Merchant
Configuration Page , you might want to make sure that - especially if users have selected
different preferred languages -, any displayed text element of your add-on is provided
through a multilingual string, i.e. as an example My Text;Mon Texte;Mein Text;....

This multilingual string, when it has to be displayed, is then interpreted with the
WRITE LANGUAGE command.

For instance, while the following code would display a button only in En-
glish :

<input type="submit" name="Search" value="Search">

...this code below, on the other hand, would display if user’s preferred
language were German :

<input type="submit" name="Search"
value="«WRITE LANGUAGE Search;Chercher;Suchen»">

Therefore, if you wish to allow any piece of text to be displayed according to user’s
preferred language, you should replace it by command «WRITE LANGUAGE My Text;Mon
Texte;Mein Text;...» for as many languages that you have enabled at the Merchant
Configuration Page. The order of languages is as follows :

38

Language Value
English 1
French 2
German 3
Dutch 4

Portuguese 5
Luxembourgish 6

Spanish 7
Italian 8
Swedish 9
Polish 10

Hungarian 11
Russian 12

Function @languageitem also performs the same duty :

«=@languageitem("Search;Chercher;Suchen")»

If multilingual string is to be used in an Ajax environment, display issues might arise
if special characters or accented letters are involved : it is then advised to use function
@atohtml2 (A.10.6.2), or more directly the following syntax :

«WRITE LANGUAGE %html;Next;Précédent;Nächst»

or also

«%html;=@languageitem("Next;Précédent;Nächst")»

This %html; right a string directly performs @atohtml2’s action.

When Javascript dialog boxes are involved, the @atojavascript (A.10.6.3) should
be used in order to display multilingual strings with non-ASCII characters correctly. It
is also available in a short form :

<script language="JavaScript">
alert("«WRITE LANGUAGE %js;Item is not available;Objet non disponible;Produkt

ist nicht verfügbar»")
...

B.4 Variables, forms, scripts

B.4.1 CGI variables

As previously explained (How .phs pages are interpreted and displayed, B.1.1), 3 CGI
variables (SqlDB, Sql and xid) are a minima necessary to display a Shop page. They
are completed by two others :

39

• _MerchantId, which is the identifier for your Merchant ;

• _CustomScriptId, which identifies the add-on, script-wise.

The value of these need not to be known explicitly nor modified, except for Sql, which
rules what .phs script is displayed, and thus subject to be changed.

As scripts are called (B.4.3.2), other CGI variables can be created and used.

B.4.2 Accessing names and values of CGI variables

For debugging purposes, the names and values of current CGI variables are accessed via
CGINAME and CGIVALUE.
In order to go through all of them, these are used within a «LIST»...«/LISTCGI» loop
environment, in which instructions are executed as many times as there are CGI variables.

For instance, the following codes can be used to list all CGI variables (and their
values) as used in the current script :

<TABLE>
«LIST»
<TR><TD>«CGINAME»:</TD><TD>«CGIVALUE»</TD></TR>
«/LIST CGI»

</TABLE>

B.4.3 CGI variables and HTML forms

Whenever a HTML form is defined in a .phs script, CGI variables need to be recalled as
INPUTs, as written in Code 1.

Code 1 Basic code to create HTML forms.

<FORM METHOD="post" ACTION="/Scripts/sql.exe">
<INPUT TYPE="hidden" NAME="SqlDB" VALUE="«SqlDB»">
<INPUT TYPE="hidden" NAME="Sql" VALUE="«Sql»">
<INPUT TYPE="hidden" NAME="xid" VALUE="«xid»">
<INPUT TYPE="hidden" NAME="_CustomScriptId" VALUE="«_CustomScriptId»">
<INPUT TYPE="hidden" NAME="_MerchantId" VALUE="«_MerchantId»">
[Form contents]

</FORM>

As it can be seen, the value of these is accessed like any other OSL variable, i.e. by
putting them between guillemots.

Recalling the five basic CGI variables, this is the most basic form that can be created :
but other CGI variables can be created within a form, as shown below.

40

B.4.3.1 Creating CGI variables in a form

Simply enough, a new CGI variable as used in a form can be created as an INPUT :

<INPUT TYPE="hidden" NAME="MyCGIVar" VALUE="«MyCGIVarValue»">

This of course requires that, somewhere inside the form, variable MyCGIVar is actually
assessed a value.
Various types of input (hidden, text, checkbox, radiobutton) can be used.

B.4.3.2 Form calling another script

In Code 1, line

<INPUT TYPE="hidden" NAME="Sql" VALUE="«Sql»">

means that, upon generating of this form, the current script (which name always is ac-
cessible via «Sql») was called : thus, upon submit, system remained on the current script.

On the other hand, if we wanted the form to call another script, named for instance
AddStuff.phs script, this line would have been replaced by :

<INPUT TYPE="hidden" NAME="Sql" VALUE="AddOn:AddStuff.phs">

It has to be noted that a script is always referred to as this way, LibraryName:ScriptName.phs.

Code 2 then shows what could be done to make appear an button that,
upon click, calls the AddStuff.phs script.

Code 2 A HTML form that calls another script ; other lines are similar to Code 1.

<FORM METHOD="post" ACTION="/Scripts/sql.exe">
...
<INPUT TYPE="hidden" NAME="Sql" VALUE="AddOn:AddStuff.phs">
...
<INPUT TYPE="submit" NAME="Add" VALUE="Add stuff">
...

</FORM>

Inside the called script, any CGI variable as defined within the previous form then
exists, and its value is accessible with the usual «...».

41

B.4.4 Conserving variables from one script to another

There are different ways to branch .phs scripts :

• by means of form submission, which conserves only CGI variables defined therein ;

• by means of an «INCLUDE... », thanks to which any variable as used before exists
in the included script (this is used for instance to initialize new variables before an
included script that will assess values to them, see for instance Information on users
B.6.1.2) ;

• by means of a redirection.

In the latter case, a string containing all basic 5 CGI variables, as well as other
variables you want to pass, must be built in the following fashion :

...

...

...
<META HTTP-EQUIV="refresh" CONTENT="0;
URL=/Scripts/sql.exe?SqlDB=«SqlDB»&Sql=AddOn:RedirScript.phs&xid=«xid»
&_MerchantId=«_MerchantId»&_CustomScriptId=«_CustomScriptId»
&_Var1=«_Var1»&_Var2=«_Var2»"&...>

B.4.5 CGI variables and javascript functions

It can happen that the same form provides different possible actions, for instance several
buttons that would call each for a different script. In order to implement this, Code 3
provides a solution using simple javascript functions ; inside this example form :

• CGI input for Sql does not call for any script ;

• two and buttons (for instance) call for two javascript functions
onModify() and onDelete() as shown in Code 4.

The onModify() and onDelete() functions then simply consist in assigning the right
script name (AddOn:Modify.phs or AddOn:Delete.phs) to CGI variable Sql.

B.4.6 Incorporating other files

In order to make the layout of a .phs script less cluttered, the PublisherHome (B.1) can
be used to store various files such as javascript files, custom style sheets... This is done
as shown in Code 5 by using the predefined variable «#SQLWWWHOME#» which stores the
PublisherHome root.

42

Code 3 This form contains buttons that, on click, call for javascript functions outside
the form.

<FORM METHOD="post" ACTION="/Scripts/sql.exe">
...
<INPUT TYPE="hidden" NAME="Sql" VALUE="">
...
<INPUT TYPE="button" VALUE="Modify" onClick="onModify()">
...
<INPUT TYPE="button" VALUE="Delete" onClick="onDelete()">
...

</FORM>

Code 4 How javascript functions for calling a .phs script are made .

<script language="JavaScript">

function onModify(){
document.edit.Sql.value="AddOn:Modify.phs";
document.edit.submit();
}

function onDelete(){
Cfrm_Box=confirm("«WRITE LANGUAGE Are you sure;Etes-vous sûr;Sind Sie

sicher»?");
if (Cfrm_Box==true){
document.edit.Sql.value="AddOn:Delete.phs";
document.edit.submit();
}
}

</script>

Code 5 Including files "processStuff.js" and "MyOwnStyle.css" from their respective
locations js/ and css/ on PublisherHome root.

<script type="text/javascript" src="«#SQLWWWHOME#»/js/processStuff.js">
</script>

<link rel="stylesheet" href="«#SQLWWWHOME#»/css/MyOwnStyle.css"
type="text/css" media="screen"/>

43

B.5 Setting aimed user rights for the add-on

For general information about user rights, please check User right
basics in the Annex of Blue Chameleon’s Extended or Full Documentation.

User rights’ purpose is that to restrict certain actions that, when done carelessly, could
harm the data the add-on deals with.

B.5.1 Getting the current (Menu Script) user rights inside a
script

During the insertion of the add-on, dedicated user rights for it ("Menu script user rights")
are indeed created (B.2.3.2) : they may rule in a simple what can or cannot be done inside
the add-on.

For a .phs script to know what these current rights for your add-on are, it must
INCLUDE the ossbo:OSSCustomUserRights.phs script as shown in Code 6. Indeed, it
uses as a parameter the CGI variable (B.4.1) _CustomScriptId that identifies your add-
on menu script-wise and stores the right values (strings) into two previously initialized
variables, one for the owner’s user rights and the other for "All".

Code 6 This code stores in _OwnerUserRights and _UserRights the values of current
Menu Script user rights for the add-on.

«VAR NEW _OwnerUserRights=""»
«VAR NEW _UserRights=""»

«INCLUDE ossbo:OSSCustomUserRights.phs;_MerchantId=«_MerchantId»;
_CustomScriptId=«_CustomScriptId»»

This code must be placed at the top of any script in which the values of menu script
user rights are going to be needed ; this is not necessary if _OwnerUserRights and
_UserRights are carried around from script to script as CGI variables.

B.5.1.1 User rights values

With Code 6 included at the beginning of a script, add-on user rights for "All" have been
recuperated and can be accessed via _UserRights[0], which stores a value that increases
as user’s rights become more extended, according to the following :

44

Value of _UserRights[0] Corresponding user right
48 None
49 View
50 Modify
51 Create/Modify
52 Delete/Create/Modify
88 Unrestricted

(These values correspond in fact to the ASCII value of characters 0, 1, 2, 3, 4 and X.)

For instance, for a user that has been set with Create/Modify rights for the add-on
(at her/his Modify User Page) estimating _UserRights[0] will return 51.

This now can be used in practice to restrict the access to the add-on’s features, as
explained below.

B.5.2 Fine-tuning the access to add-on’s features

Inside your add-on, data might have to be modified, other data to be created while delet-
ing some might also come around ; some of these actions will never be performed by
certain users.

B.5.2.1 Access to elements of a script

Whenever an element of an add-on’s script shall not appear unless user rights are sufficient
enough to allow it, it can be put between «IF»...«ENDIF» tags, with a test done on
_UserRights[0] : for instance, the following code

«IF _UserRights[0]>51»
[Instructions]

«ENDIF»

will process [Instructions] only if user has at least Delete/Create/Modify menu
script user rights. It can therefore be used for instance (taking the example as used in
B.4.5 for javascript functions) to hide data-deleting features as shown on Code 7.

Thanks to this way of testing for user rights, the following is achieved :

• the button only appears for users who have at least Delete/Create/Modify
rights. Therefore, this call to the onDelete() function is de facto disabled for users
who have insufficient rights ;

• the fact that the onDelete() function is also itself protected in a similar way is
a further protection ensuring that, if ever "unprotected" calls to it are done, they
will abort.

45

Code 7 These elements are accessed only if _UserRights[0] corresponds to at least
Delete/Create/Modify.

<FORM METHOD="post" ACTION="/Scripts/sql.exe">
...

«IF _UserRights[0]>51»
<INPUT TYPE="button" VALUE="Delete" onClick="onDelete()">

«ENDIF»

...
</FORM>

...

<script language="JavaScript">
...

«IF _UserRights[0]>51»
function onDelete(){
...
}

«ENDIF»

...
</script>

46

B.5.2.2 Access to a whole script

As scripts multiply, it becomes sometimes uneasy to tell if a particular script, access to
which was supposed to be protected, is indeed accessed under sufficient user rights.

To ensure that no "trespass" will happen, as well as to simply render a script restricted
under other circumstances, the command EXIT STOP can be used to stop the execution of
the script. For instance, the Code 8, placed at the beginning of the script (after user rights
have been recuperated), tests if user has at least Modify rights and aborts the script if
not, displaying the "You don’t have the necessary rights to access this function." message.

Code 8 This restricts the access to the rest of the script to any user who has insufficient
rights.

[Code 6]

«*Is user allowed to go further ?*»
«IF _UserRights[0]<50»

«INCLUDE ossbo:MessageAccessDenied.phs#Message»
«EXIT STOP»

«ENDIF»
...

B.5.3 Making custom library user rights for your add-on

In the above, the user rights that were recuperated as described in B.5.1 were the "Menu
Script User Rights" : a single value for each user was obtained. As an add-on expands,
it may eventually nonetheless require more than one value.

Blue Chameleon provides the possibility to create new - library - user rights for your
add-on. In order to do this, follow this guideline :

1. open two files called ossUserConfig.phs and ossUserModify.phs ;

2. paste the Codes 9 and 11 ;

3. fill below in your custom user rights as shown as an example in Code 10 ;

4. compile the library.

B.5.3.1 Building your own ossUserConfig.phs script

This script’s aim is to make appear, on the Modify User Page, your own custom user
rights.

47

Code 9 The preamble to put in ossUserConfig.phs.

«IF _UserId == -1»
«VAR NEW azOwnerUserRights = "00000000"»
«VAR NEW azUserRights = "00000000"»

«ELSE»
«SQLEXEC STRING azUserRights = select azUserRights from

OSSCUSTOMLIBRARYUSERRIGHTS where idUser = «_UserId» AND idLibrary =
«_LibraryId»»
«SQLEXEC STRING azOwnerUserRights = select azOwnerUserRights from

OSSCUSTOMLIBRARYUSERRIGHTS where idUser = «_UserId» AND idLibrary =
«_LibraryId»»
«ENDIF»

In Code 9, two strings of rights (for "All" and "Owner") are selected for the current
user and the current library (your add-on) : they correspond to the custom rights that
are going to be defined displayed further down, in Code 10.

There :

• a general title is given ("My AddOn’s Custom User Rights") ;

• a first custom right is defined (here, "Gizmo Management"), under which are defined
two list-boxes :

– one giving the usual values of user rights (None, View,... but you can even
define what you wish), and the choice is stored in
_OwnerUserRight«_LibraryId»_0 : this will be the user right value assigned
to right "Gizmo Management" concerning Owner ;

– a similar one, this time defining in _UserRight«_LibraryId»_0 the user right
value assigned to right "Gizmo Management" concerning All.

• a second custom right ("Widget Handling") is defined, similarly as for "Gizmo Man-
agement", this time with user values stored in _OwnerUserRight«_LibraryId»_1
and _UserRight«_LibraryId»_1 ;

• and so on, incrementing the integer as put after _[Owner]UserRight«_LibraryId»....

B.5.3.2 Building the corresponding ossUserModify.phs script

While the previous script made the various new right elements appear on the Modify User
Page, a script whose code is detailed at 11 is still necessary in order to validate changes.

There :

48

Code 10 An example of a ossUserConfig.phs file : defining various custom rights for
AddOn, building for each list-boxes with multiple user right choices, for "Owner" and for
"All".

[Code 9]

<tr>
<td colspan=3><i>My AddOn’s Custom User Rights</i></td>

</tr>

<tr>
<td>Gizmo Management</td>
<td>
<select name="_OwnerUserRight«_LibraryId»_0">
<option value="0" «IF azOwnerUserRights[0]==48»selected«ENDIF»>None</option>
<option value="1" «IF azOwnerUserRights[0]==49»selected«ENDIF»>View</option>
<option value="2" «IF azOwnerUserRights[0]==50»selected«ENDIF»>Modify</option>
<option value="3" «IF azOwnerUserRights[0]==51»selected«ENDIF»>Create/Modify</option>
<option value="4" «IF azOwnerUserRights[0]==52»selected«ENDIF»>Delete/Create/Modify</option>
<option value="X" «IF azOwnerUserRights[0]==88»selected«ENDIF»>Unrestricted</option>

</select>
</td>
<td>
<select name="_UserRight«_LibraryId»_0">
<option value="0" «IF azUserRights[0]==48»selected«ENDIF»>None</option>
[...]
<option value="X" «IF azOwnerUserRights[0]==88»selected«ENDIF»>Unrestricted</option>

</select>
<td>

</tr>

<tr>
<td>Widget Handling</td>
<td>
<select name="_OwnerUserRight«_LibraryId»_1">
[...]

</select>
</td>
<td>
<select name="_UserRight«_LibraryId»_1">
[...]

</select>
</td>

</tr>

49

Code 11 The ossUserModify.phs file corresponding to the ossUserConfig.phs as
previously defined.

«SQLEXEC INT existSqlLine = select count(*) from
OSSCUSTOMLIBRARYUSERRIGHTS where idMerchant=«_MerchantId» AND
idLibrary=«_LibraryId» AND idUser=«_UserId»»

«IF existSqlLine==0»
«SQL INSERT INTO OSSCUSTOMLIBRARYUSERRIGHTS

(idMerchant,idLibrary,idUser,azOwnerUserRights,azUserRights)
VALUES(«_MerchantId»,«_LibraryId»,«_UserId»,’«_OwnerUserRight«_LibraryId»_0»
«_OwnerUserRight«_LibraryId»_1»000000’,’«_UserRight«_LibraryId»_0»
«_UserRight«_LibraryId»_1»000000’)»
«ENDIF»

«SQL update OSSCUSTOMLIBRARYUSERRIGHTS set
azOwnerUserRights=’«_OwnerUserRight«_LibraryId»_0»«_OwnerUserRight«_LibraryId»_1»
000000’,azUserRights=’«_UserRight«_LibraryId»_0»«_UserRight«_LibraryId»_1»000000’
where idMerchant=«_MerchantId» AND idLibrary=«_LibraryId» AND
idUser=«_UserId»»

• a first SQL command tests if the custom rights pertaining to your library have been
inserted into Blue Chameleon’s OSSCUSTOMLIBRARYUSERRIGHTS ;

• a SQL command places into this table the values of the Owner user rights for each
group of rights : «_OwnerUserRight«_LibraryId»_0»«_OwnerUserRight«_LibraryId»_1»,
that correspond respectively to "Gizmo Management" and "Widget Handling".
This makes two values, and the string is thus completed by six zeros, as, in the
preamble of ossUserConfig.phs, the variable azOwnerUserRights was defined
with eight zeros. A similar thing is done for "All" user rights with «_UserRight«_LibraryId»...
;

• a last SQL command sets the rights themselves in the same way.

B.5.3.3 These two scripts in force

Once the ossUserConfig.phs and ossUserModify.phs files have been integrated and
compiled with the library, these new user rights finally appear at the bottom of the
Modify User Page, as featured in Fig.B.10 : they can now be set and used in your scripts,
as cleared up below.

B.5.3.4 Incorporating your add-on custom user rights in scripts

As shown in Code 12 below, calling script ossbo:OSSLibraryUserRight.phs stores into
strings _OwnerUserRights and _GroupUserRights (which have to be initialized before)

50

Figure B.10: The custom rights now appear on the Modify User Page.

the right vectors. The input parameters for the script, apart from the usual _MerchantId,
are several identifiers :

• _LibraryId, which value «_CustomLibraryId» corresponds to the signature (B.3.1.1)
of your add-on (in the current example,1003) ;

• _UserId, which is set to the current user (#SQLUSERID#) ;

• user’s _UserGroupId, as obtained via script ossbo:OSSUserInfo.phs (B.6.1.2).

Code 12 Getting the custom user rights of an add-on.

«VAR NEW _UserGroupId=""»
«INCLUDE
ossbo:OSSUserInfo.phs;_MerchantId=«_MerchantId»;_UserId=«#SQLUSERID#»»

«VAR NEW _OwnerUserRights=""»
«VAR NEW _GroupUserRights=""»
«INCLUDE ossbo:OSSLibraryUserRight.phs;_MerchantId=«_MerchantId»;
_LibraryId=1003;_UserId=«#SQLUSERID#»;_UserGroupId=«_UserGroupId»»

Once initialized, in this current example, the _OwnerUserRights string will be XX000000
for a user that has unrestricted owner rights for "Gizmo Management" and "Widget
Handling". The former is then accessed via _OwnerUserRights[0] and the latter via
_OwnerUserRights[1].

The following code shows for instance how a button can be
hidden from users who do not have at least View rights for it :

«IF _OwnerUserRights[0]>=49 && _GroupUserRights[0]>=49»
<INPUT TYPE="button" VALUE="Gizmo Management"

onClick="onManageGizmo()">
«ENDIF»

51

In order to call ossbo:OSSLibraryUserRight.phs only once (at the en-
try script), _OwnerUserRights and _GroupUserRights can be conveniently
transmitted from script to script as CGI variables :

...&_OwnerUserRights=«_OwnerUserRights»&_GroupUserRights=«_GroupUserRights»...

B.6 Importing information on Shop data

In order to get information related to your Shop data such as users, clients, orders, in-
voices... Blue Chameleon’s main library ossbo.phs has been equipped with a wide range
of scripts aimed at fetching any kind of information as entered in other places.

Whatever you want to get, those information scripts are used in the same way :

• first, initialize output variables (only those you want to use) ;

• then, call script, using if applicable input parameters.

According to the type of the output variable to fetch, numerical value or string, it is
either initialized to 0 (e.g. «VAR NEW _BillTotalPrice=0») or to the null string (e.g.
«VAR NEW _ClientFullName="" »).

B.6.1 Importing user and user group information

Through the course of an add-on’s development, it might come in necessary to implement
functionalities that are user- or user group-dependent.
The following guideline then shows how to bring in those data.

B.6.1.1 List of users

The ossbo:OSSUserList.phs scripts can be used to return a formatted list of users.

ossbo:OSSUserList.phs
Input Variable Type Corresponding data
_MerchantId Integer Merchant identifier
_UserCustomScriptId Integer Custom script identifier to test access rights [Optional]
_UserMinUserRights Integer User rights required at least [Optional]
_UserGroupId Integer User group identifier

(not existing=all users, -1=users in a user group)
Return value : string <username>=<id>,<username>=<id>,...

52

B.6.1.1.1 Examples of use The following returns a list of all users :

«VAR NEW _UserList=""»
«INCLUDE _UserList=ossbo:OSSUserList.phs;_MerchantId=1 »

Returned variable _UserList is then formatted as "<username>=<id>,<username>=<id>,..."
(for instance "admin=1,Dick=4,Harry=7,James=6,...").

This other example features all possible optional input parameters that this script
can be called with :

«VAR NEW _UserList=""»
«INCLUDE _UserList=ossbo:OSSUserList.phs;_MerchantId=«_MerchantId»»;
_UserCustomScriptId=«_CustomScriptId»;
_UserMinUserRights= 49; _UserGroupId=5»

There :

• the identifier of the custom script is passed on ;

• the ’View’ user right (49) is passed on to select users that have at least this menu
script user right on the add-on ;

• the identifier for the user group "Accounting" (5) is passed to select users belonging
to this group.

Consequently, the _UserList as obtained by this call will contains only the members
of the "Accounting" user group that have at least view rights on the add-on.

B.6.1.2 Information on users

A call to script ossbo:OSSUserInfo.phs, with only parameters _MerchantId and _UserId,
allows to access a multitude of user-related data as filled on the Create/Modify User Page.

ossbo:OSSUserInfo.phs
Input Variable Type Corresponding data
_MerchantId Integer Merchant identifier
_UserId Integer User identifier
Output Variable Type Corresponding data
_UserName String User name
_UserGroupId Integer Default user group identifier
_UserGroup String Default user group label
_UserGroupList String User group list id:label;id:label...
_UserGroupIdList String User group identifier list id;id...
_UserRealname String User name
_UserFirstName String User first name
_UserTel String User phone number
_UserMobile String User mobile number
_UserEMail String User email address
_UserNotification String User notification

Return value : _Status (1 if user was found, 0 if not)

53

B.6.1.2.1 Example of use The following bit of script stores the current user’s first
name and last name as string _CurrFullName and displays it :

«VAR NEW _UserRealName=""»
«VAR NEW _UserFirstName=""»
«INCLUDE ossbo:OSSUserInfo.phs;_MerchantId=«_MerchantId»;_UserId=«#SQLUSERID#»»
«VAR NEW _CurrFullName=_UserFirstName+" "+_UserRealName»
«WRITE LANGUAGE Your are;Vous êtes;Sie sind» «_CurrFullName»

B.6.1.3 List of user groups

The ossbo:OSSUserGroupList.phs script returns a formatted list of user groups.

ossbo:OSSUserGroupList.phs
Input Variable Type Corresponding data
_MerchantId Integer Merchant identifier
Return value : string <id>:<label>:<prefs>;<id>:<label>:<prefs>...

B.6.1.3.1 Example of use This call

«VAR NEW _UserGroupList=""»
«INCLUDE
_UserGroupList=ossbo:OSSUserGroupList.phs;_MerchantId=«_MerchantId»»

stores into _UserGroupList, as an example, "5:Accounting:00000000;1:Administrator:10000000;...".
The <prefs> string consists in a 8-digit boolean string coding for user group preferences
; as of now, only the first digit is used meaning if group is open (0) or closed (1).

B.6.1.4 Information on user groups

Calling the script ossbo:OSSUserGroupInfo.phs allows to obtain the label, preferences
and default user identifier of user group as identified by _UserGroupId.

ossbo:OSSUserGroupInfo.phs
Input Variable Type Corresponding data
_MerchantId Integer Merchant identifier
_UserGroupId Integer User group identifier
_DefaultUserId Integer Default user identifier
Output Variable Type Corresponding data
_UserGroup String User group label
_UserGroupPrefs String User group preferences
Return value : _Status (1 if group was found, 0 if not)

54

B.6.1.4.1 Example of use For instance :

«VAR NEW _UserGroup=""»
«VAR NEW _UserGroupPrefs=""»
«VAR NEW _DefaultUserId=0»
«INCLUDE
ossbo:OSSUserGroupInfo.phs;_MerchantId=«_MerchantId»;_UserGroupId=5»

would store the name of the user group as well as its preferences (see Getting list of
user groups, Example of use above) in the initialized variables for user group number 5.

B.6.2 Information on Merchant

The data entered at the Merchant General Information Page can be retrieved through
the ossbo:OSSMerchantInfo.phs script.

ossbo:OSSMerchantInfo.phs
Input Variable Type Corresponding data
_MerchantId Integer Merchant identifier
_LanguageId Integer Language identifier (B.3.3) [Optional]
Output Variable Type Corresponding data
_MerchantName String Merchant name
_MerchantAddress1 String Merchant address
_MerchantAddress2 String
_MerchantAddress3 String
_MerchantPCode String Merchant postcode
_MerchantCity String Merchant city
_MerchantCountryId Integer Merchant country identifier
_MerchantCountry String Merchant country name
_MerchantPhone String Merchant phone number
_MerchantFax String Merchant fax number
_MerchantEmail String Merchant email
_MerchantPrefs String Merchant preferences string
_MerchantUserGroupId Integer Merchant user group identifier
Return value : _Status (1 if merchant info was correctly fetched, 0 if not)

B.6.2.1 Example of use

An example on the purpose of recuperating some data about your merchant is cleared
up at Advanced developing : using Blue Chameleon’s mail gate (B.9).

B.6.3 Information on clients

The script ossbo:OSSClientInfo.phs aims at getting all client information as entered/modified
at the Add/Modify Client Page.

55

ossbo:OSSClientInfo.phs
Input Variable Type Corresponding data
_MerchantId Integer Merchant identifier
_LanguageId Integer Language identifier (B.3.3) [Optional]
_ClientId Integer Client identifier
_ClientUsername String Client username [Optional]
_NoWalletInfo Integer Flag to ignore wallet (0-1) [Optional]
Output Variable Type Corresponding data
_ClientType Integer Client type
_ClientTitle String Client title
_ClientCompany String Client company name
_ClientFName String Client first name
_ClientName String Client name
_ClientFullName String Client full name (name, first name, company)
_ClientAddress1 String Client address
_ClientAddress2 String
_ClientAddress3 String
_ClientPCode String Client postcode
_ClientCity String Client city
_ClientCountryId Integer Client country identifier
_ClientCountry String Client country
_ClientPhone String Client phone number
_ClientOffice String Client office phone number
_ClientMobile String Client mobile phone number
_ClientFax String Client fax number
_ClientEmail String Client email address
_ClientUsername String Client username
_ClientPassword String Client password
_ClientLanguage String Client language
_ClientDelivery String Client delivery
_ClientDeliveryData String Client delivery data
_ClientBilling String Client billing
_ClientPayment String Client payment
_ClientPaymentData String Client payment data
_ClientPaymentStatus String Client payment status label
_ClientSLA String Client service level agreement

Return value : _Status (1 if client was found, 0 if not)

B.6.3.1 Example of use

The following displays a table of clients’ full names and phone numbers :

<TABLE>
<TR>
<TD>Name</TD><TD>Number</TD>
</TR>

56

«SQLREPEAT»
«VAR NEW _ClientName=""»
«VAR NEW _ClientPhone=""»
«INCLUDE _Status=ossbo:OSSClientInfo.phs;_MerchantId=1;_ClientId=«#SQLREPEAT#»»
«IF _Status==1»
<TR>
<TD>«_ClientName»</TD><TD>«_ClientPhone»</TD>
</TR>
«ENDIF»
«/SQLREPEAT 0;1000»
</TABLE>

B.6.4 Information on subscriptions

The script ossbo:OSSSubscriptionInfo.phs returns various information on subscrip-
tions, and also on the related client.

57

ossbo:OSSSubscriptionInfo.phs
Input Variable Type Corresponding data
_MerchantId Integer Merchant identifier
_LanguageId Integer Language identifier (B.3.3) [Optional]
_SubscriptionId Integer Subscription identifier
Output Variable Type Corresponding data
_SubscriptionParentId Integer Parent subscription identifier
_SubscriptionChildList String List of subscription children identifiers
_SubscriptionPrevId Integer Previous subscription identifier
_SubscriptionNextId Integer Next subscription identifier
_SubscriptionName String Subscription name
_SubscriptionStatus String Subscription status (<iStatus>=<label>)
_SubscriptionCustomStatus String Subscription custom status (<id>=<label>)
_SubscriptionStartDate Integer Subscription start date (cdate)
_SubscriptionEndDate Integer Subscription end date (cdate)
_ArtId Integer Article identifier
_ArtPrice Integer Article price
_ArtBasePrice Integer Article base price
_ArtFollowUpPrice Integer Article follow-up price
_ArtUnits Integer Article units
_ArtUnitsType Integer Article units type
_ArtUnitsPrice Integer Article units price
_ArtLibraryData String Article external library data
_OrderNumber String Order reference number
_OrderDate Integer Order date as ctime
_OrderSalesman String Order salesman identifier
_OrderPayment String Order payment method
_OrderBilling String Order billing method
_OrderTicketId Integer Order ticket identifier
_ClientId String Client identifier (Param=<id>)

⊕ All ossbo:OSSClientInfo.phs (B.6.3) output variables
Return value : _Status (1 if subscription was found, 0 if not)

B.6.4.1 Example of use

Part Developing subscription (configure, display) custom scripts : an example (B.7.2.2)
shows in detail how ossbo:OSSSubscriptionInfo.phs can be useful.

B.6.5 Information on orders

The script ossbo:OSSOrderInfo.phs returns various information on orders, and also on
the related client.

58

ossbo:OSSOrderInfo.phs
Input Variable Type Corresponding data
_MerchantId Integer Merchant identifier
_LanguageId Integer Language identifier (B.3.3) [Optional]
_OrderId Integer Order identifier
Output Variable Type Corresponding data
_OrderOwner Integer Order owner identifier
_OrderNumber String Order reference number
_OrderDate Integer Order date as ctime
_OrderSalesman String Order salesperson identifier
_OrderPayment Integer Order payment method
_OrderBilling Integer Order billing method

⊕ All ossbo:OSSClientInfo.phs (B.6.3) output variables
Return value : _Status (1 if client and order were found, 0 if not)

B.6.5.1 Example of use

The following outputs a table of order numbers, salespersons and client names of orders
done in 2010.

<TABLE>
<TR>
<TD>Order</TD><TD>Salesperson<TD>Client</TD>
</TR>
«SQLREPEAT»
«VAR NEW _OrderNumber=""»
«VAR NEW _OrderSalesman=""»
«VAR NEW _ClientName=""»
«INCLUDE ossbo:OSSOrderInfo.phs;_MerchantId=1;_OrderId=«#SQLREPEAT#»»
«IF @strstrsearch(_OrderNumber;"2010")==0»
<TR>
<TD>«_OrderNumber»</TD><TD>«_OrderSalesman»</TD><TD>«_ClientName»</TD>
</TR>
«ENDIF»
«/SQLREPEAT 0;10000»
</TABLE>

B.6.6 Information on invoices

The script ossbo:OSSBillInfo.phs returns various (mostly numerical) information on
invoices.

59

ossbo:OSSBillInfo.phs
Input Variable Type Corresponding data
_MerchantId Integer Merchant identifier
_BillId Integer Invoice identifier
Output Variable Type Corresponding data
_BillOrderId Integer Invoice order identifier
_BillUserId Integer Invoice user identifier that registered the invoice
_BillClientId Integer Invoice client identifier
_BillReference String Invoice reference
_BillCurrencyId Integer Invoice currency identifier
_BillDate Integer Invoice date (cday)
_BillValueDate Integer Invoice value date (cday)
_BillTotalPrice Integer Invoice total price
_BillTotalTax Integer Invoice total tax
_BillOpenPrice Integer Invoice total open price
_BillStatus Integer Invoice status

(0=editable, 1=sent, 2=reminder 1, 3=reminder 2,
4=reminder 3, 5=reminder 4, 100=finished)

_BillPaid Integer Invoice paid status (0=unpaid, 1=paid)
_BillExport Integer Invoice export status

(0=not exported, 1=exported, 2=exported and confirmed)
Return value : _Status (1 if invoice was found, 0 if not)

B.6.6.1 Example of use

The following shows a table featuring already-paid invoices over a certain amount (_MyAmount)
as recorded in 2010, giving also the user’s names that recorded them :

<TABLE>
<TR>
<TD>Reference</TD><TD>Amount</TD><TD>Recorded by</TD>
</TR>
«SQLREPEAT»
«VAR NEW _BillReference=""»
«VAR NEW _BillTotalPrice=0»
«VAR NEW _BillUserId=0»
«VAR NEW _BillPaid=0»
«INCLUDE _Status=ossbo:OSSBillInfo.phs;_MerchantId=1;_BillId=«#SQLREPEAT#»»
«IF _Status==1 && _BillPaid==1 && _BillTotalPrice>_MyAmount»
«VAR NEW _UserRealname=""»
«INCLUDE ossbo:OSSUserInfo.phs;_MerchantId=«_MerchantId»;_UserId=«_BillUserId»
<TR>
<TD>«_BillReference»</TD><TD>«_BillTotalPrice»</TD><TD>«_UserRealname»</TD>
</TR>
«ENDIF»
«/SQLREPEAT 0;10000»

60

</TABLE>

B.7 Advanced developing : custom scripts
The previous showed how information related to Blue Chameleon objects could be re-
trieved. Now, conversely, when dealing with articles, clients, subscriptions... in the
regular shop, you might want to, in this very environment, link to data pertaining to
your add-on.

This can be achieved thanks to custom scripts, where a particular, dedicated script
belonging to your add-on is declared in the Shop environment to be actionable there. For
instance, while on a subscription search, buttons for each subscription may be available
to display further data.

B.7.1 Adding a custom script

User rights for custom script management can be set up either at the Modify
User Page or the User Right Page under the element

Script management

No matter what its context use will be, a custom script is created as shown in Fig.B.11.

Figure B.11: The Add New Menu Script Page.

On this page, the following are chosen :

• a use, through the ’Script:’ menu ;

• the library it belongs to (i.e. your add-on) ;

• a name under which it appears on the page where this script is selected ;

61

• the text of the button that will launch it ;

• finally, the script file itself, always preceeded by the add-on name.

Once created, the rights for the custom script must be set on the Modify User Page
(Fig.B.12).

Figure B.12: All defined custom scripts are assessed rights so that the rele-
vant buttons (if applicable) might be displayed.

B.7.2 Subscription-related custom scripts

They are of different types, as chosen from the ’Script:’ menu on the Add New Menu
Script Page as illustrated above :

• "Configure subscription" ;

• "Display subscription" ;

• "Display subscription consumption" ;

• "Event on subscription".

The first three aim at displaying relevant buttons for each subscription after a sub-

scription search (through either or), while
the latter aims at triggering dedicated actions when subscription status is modified (ac-
tivated, suspended,...).

B.7.2.1 Attaching scripts to a subscription article - Effects

For a particular subscription article, defining (if desired) which custom scripts are trig-
gered is done while at the Modify Subscription Page (Fig.B.13), accessed through the
eponymous button as found on the Article Management Page (see Article Management
chapter, Managing articles).

The ’Configuration script’, ’View script’, ’Consumption script’ and ’Event script’
menus respectively feature defined custom scripts of the types as listed above. Concerning
the ’Event script’, the checkboxes respectively rule :

62

Figure B.13: Picking previously-defined subscription custom scripts to be
executed on this subscription article.

• if variables _OssUserName and _OssUserPassword (related client’s user name and
password) will be available in the ’Event script’ ;

• whether an email is automatically sent to client on activating or de-activating. In
the former case (with email sent), variable _iCommand (see table below) will be
respectively 7 or 8, while in the latter 5 or 6.

Fig.B.14 then shows the new buttons that appear for a particular subscription which
article was assessed "Configure subscription" and "Display subscription" scripts.

Figure B.14: These buttons now appear for any "At-Home Help" subscrip-
tion.

Then, in the scripts as called by the buttons or triggered by a subscription status
change, several variables exist :

63

Custom script type Existing variable Corresponding data
All _MerchantId Merchant identifier

_CustomScriptId Custom script identifier
Configure subscription _SubscriptionId Subscription identifier
Display subscription
Display subscription consumption
Event on subscription _iOssIdentifier Subscription identifier

_iCommand New subscription status :
1=Started
2=Ended
5=Activated (or re-activated)
6=Halted
7=Activated (or re-activated)
- with email sent
8=Halted - with email sent
9=Subscription dates modified :

_iStartDate - new start date
_iEndDate - new end date

10=Consumption updated

_OssUserName Client user name
_OssPassword Client password

B.7.2.2 Developing subscription custom scripts : "Display" example

The following codes show an example of what can be done for a "Display subscription"
custom script named AddOn:ViewLicense.phs. Inside the add-on, a table ADDON_LICENCE
had been previously created with the fields idSubscription (int), iEndDate (int)
and azLicense varchar(128). This code basically displays these three values for the

clicked-on (via button) subscription.

In Code 13, first, custom script user rights related to this script are loaded and further
access is blocked if user does not have at least ’View’ user rights (cf. FigB.12). Then,
the correct variables to store the subscription end date and client name to are initialized
and set by a call to script ossbo:OSSSubscriptionInfo.phs (B.6.4).

Finally, last part of AddOn:ViewLicense.phs (Code 14) fetches the "license" corre-
sponding to the subscription and displays a table where subscription identifier, end date
and license are shown. Concerning end date, a small test is done to check if subscription
has no specified end (in which case Blue Chameleon had stored corresponding cdate as
99999), otherwise formats it in DD/MM/YYYY.

Fig.B.15 shows this example "Display subscription" script’s final result.

For this page to actually display information, the ADDON_LICENSE line as used here

64

Code 13 AddOn:ViewLicense.phs : rights, initializing variables

«VAR NEW _OwnerUserRights=""»
«VAR NEW _UserRights=""»
«INCLUDE
ossbo:OSSCustomUserRights.phs;_MerchantId=«_MerchantId»;_CustomScriptId=«_CustomScriptId»»

«*Is user allowed to do this ?*»
«IF _UserRights[0]<49»
«INCLUDE ossbo:MessageAccessDenied.phs#Message»
«EXIT STOP»

«ENDIF»

«VAR NEW _SubscriptionEndDate=0»
«VAR NEW _ClientName=""»
«INCLUDE
ossbo:OSSSubscriptionInfo.phs;_MerchantId=«_MerchantId»;_SubscriptionId=«_SubscriptionId»»

Code 14 AddOn:ViewLicense.phs [continued and finished] : display of results

«SQLEXEC STRING _License=SELECT azLicense FROM ADDON_LICENSE WHERE
idSubscription=«_SubscriptionId»»

<p>
<table>
<tr><td>Subscription identifier :</td><td>«_SubscriptionId»</td></tr>
<tr><td>Client :</td><td>«_ClientName»</td></tr>
<tr>
<td>End date :</td>
«IF _SubscriptionEndDate=99999»«*not specified*»
<td>Not specified</td>

«ELSE»
<td>«=@daytimeday(_SubscriptionEndDate)»/

«=@daytimemonth(_SubscriptionEndDate)»/
«=@daytimeyear(_SubscriptionEndDate)»</td>

«ENDIF»
</tr>
<tr><td>License :</td><td>«_License»</td></tr></table>

<p>

65

Figure B.15: The rendering of AddOn:ViewLicense.phs. It is to remember
that the title of the page is not set in the script itself, but by the ’Name:’ as
entered while adding this custom script (Fig.B.11).

had to be inserted in the first place : this can be done automatically by using a "Event
on subscription" custom script, as cleared up below.

B.7.2.3 Subscription events : an example

An "Event on subscription" script, or more precisely one of its parts, is automatically
launched when a particular subscription is activated, suspended, modified date-wise,...

The general structure of such a custom script, called in this example AddOn:Events.phs
is better done following the guideline as shown in Code 15. Basically, already-existing
variable _iCommand is tested so that specific commands (or even a call to an add-on
script) are performed according to how subscription has been acted on.

In the example of the ADDON_LICENCE table, the AddOn:Events.phs can be equipped
with commands that insert a new line in this table when subscription is activated.

In the SQL transaction as featured in Code 16, a test is done on whether this subscrip-
tion is already in the ADDON_LICENSE table (so that it may not be inserted another time
in the case of a re-activating) ; if not :

• a "license" string is composed by concatenating client’s name (put into capitals and
simplified thanks to @tocompare function) with a random number, casted into a
string ;

• this element is inserted into the table along with subscription identifier and end
date.

It is to note that in this "Event on subscription" context, subscription is identifier by
_iOssIdentifier.

At the end, variable _Success records the success or failure of the transaction, and
result is displayed on the screen, as featured in Fig.B.16.

66

Code 15 AddOn:Events.phs : a general template.

«VAR NEW _OwnerUserRights=""»
«VAR NEW _UserRights=""»
«INCLUDE
ossbo:OSSCustomUserRights.phs;_MerchantId=«_MerchantId»;_CustomScriptId=«_CustomScriptId»»

«IF _iCommand==1»
[Do stuff associated with this subscription’s start]

«ELSEIF _iCommand==2»
[Do stuff associated with this subscription’s end]

«ELSEIF _iCommand==5»
[Do stuff associated with this subscription’s activating or re-activating]

«ELSEIF _iCommand==6»
[Do stuff associated with this subscription’s suspension or block]

«ELSEIF _iCommand==7»
[Do stuff associated with this subscription’s activation or re-activation and send

email]
«ELSEIF _iCommand==8»

[Do stuff associated with this subscription’s suspension or block and send email]
«ELSEIF _iCommand==9»

[Do stuff when this subscription’s start and end dates are modified]
«ELSEIF _iCommand==10»

[Do stuff when this subscription’s consumption is updated]
«ENDIF»

Figure B.16: This ordered subscription is activated, which triggers the cor-
responding event in AddOn:Events.phs.

The following code shows another example : it aims at updating ADDON_LICENSE
where subscription dates are modified.

67

Code 16 AddOn:Events.phs [part] : do this when subscription is activated

...
«VAR NEW _SubscriptionEndDate=0»
«VAR NEW _ClientName=""»
«INCLUDE
ossbo:OSSSubscriptionInfo.phs;_MerchantId=«_MerchantId»;_SubscriptionId=«_iOssIdentifier»»

«IF _iCommand==5 || _iCommand==7 »
«SQLSTATUS TRANSACTION BEGIN»
«SQLEXEC INT _Exists=SELECT COUNT(*) FROM ADDON_LICENSE WHERE

idSubscription=«_iOssIdentifier»»
«IF _Exists==0»
«VAR NEW _License=@tocompare(_ClientName)+@itoa(@random(1000))»
«SQL INSERT INTO ADDON_LICENSE

VALUES(«_iOssIdentifier»,«_SubscriptionEndDate»,’«_License»’)»
«ENDIF»
«VAR NEW _Success=#TRANSACTIONSTATUS#»

«SQLSTATUS TRANSACTION END»
«IF _Exists==0»
«IF _Success==1»
License insertion succeeded («_License»).

«ELSE»
License insertion failed !

«ENDIF»
«ENDIF»

«ENDIF»
...

Code 17 AddOn:Events.phs [part] : do this when subscription’s dates are modified

...
«IF _iCommand==9 »
«SQL UPDATE ADDON_LICENSE SET iEndDate=«_iEndDate» WHERE

idSubscription=«_iOssIdentifier»»
«IF #SQLSTATUS#==1»

License entry successfully updated.
«ELSE»

License entry update failed !
«ENDIF»

«ENDIF»
...

68

The new end date for that subscription is recuperated through the _iEndDate variable
and success is shown on the final screen (Fig.B.17).

Figure B.17: This activated subscription has its end date modified, which
triggers the corresponding event in AddOn:Events.phs.

B.8 Advanced developing : a custom event control
Blue Chameleon is naturally equipped with event controls (see General Interface Han-
dling, Event Controls) that, when a user logs on, aim to represent the latest tickets, the
current/late projects, tasks...

Your add-on can also be featured on Blue Chameleon’s . In order to do this,
an oss- script (B.3.1) called ossModuleHeadline.phs can be developed.

Code 18 shows an example. The code for your headline must be embedded in the
ELSE...ENDIF environment, as the first part enables Blue Chameleon to propose your

event control to be added, through .

After the mandatory IF... preamble, the example shows how custom user rights are
recuperated :

• first, a call to ossbo:OSSCustomScriptId.phs is done to recall the identifier of
the custom script for your add-on ; ’2001’ must be used for the _CustomScript
parameter (it identifies it as ’menu script’) and _RegisterId is no other than the
signature of your add-on (B.3.1.1), here 1003 ;

• the fetched _CustomScriptId then enables to recuperate the custom script user
rights, through a call to ossbo:OSSCustomUserRights.phs.

If needed, the custom rights related to the library can be recuperated as shown in
Code 12.

In the rest, the c-date for the current day is evaluated and used to count how many
"licenses" end on this day ; if there actually are, through a SQLOUTPUT loop, a maximum

69

of four of them are then displayed as click-links to a AddOn:ViewAFinLicense.phs script
to which the following values are transmitted :

• the shop identifier «SqlDB», session identifier «xid», aimed
AddOn:ViewAFinLicense.phs script ;

• merchant identifier «_MerchantId», custom script identifier «_CustomScriptId» ;

• finally, the identifier for that particular subscription «idSubscription».

At the end, another click-link redirects to a script AddOn:ViewAllFinLics.phs propos-
ing to view all finishing licenses of the day.

Code 18 ossModuleHeadline.phs : the dark-blue part is mandatory.

«IF @toi(_ossProcInfo)==1»
«VAR NEW azProcInfo = "AddOn"»
«RETURN azProcInfo»

«ELSE»

«INCLUDE _CustomScriptId=ossbo:OSSCustomScriptId.phs;_CustomScript=2001;
_MerchantId=«_MerchantId»;_RegisterId=1003»
«VAR NEW _OwnerUserRights=""»
«VAR NEW _UserRights=""»
«INCLUDE ossbo:OSSCustomUserRights.phs; _MerchantId=«_MerchantId»;

_CustomScriptId=«_CustomScriptId»»

«VAR NEW _Today=@daytime()»
«SQLEXEC INT _Count=SELECT COUNT(*) FROM ADDON_LICENSE WHERE iEndDate=«_Today»»
«IF _Count==0»
No license ends today

«ELSE»
«_Count» license(s) end(s) today :

«SQLOUTPUT»
<a href=’/Scripts/sql.exe?SqlDB=«SqlDB»&xid=«xid»&Sql=AddOn:ViewAFinLicense.phs

&_MerchantId=«_MerchantId»&_CustomScriptId=«_CustomScriptId»
&_SubscriptionId=«idSubscription»’>

«azLicense»

«/SQLOUTPUT SELECT * FROM ADDON_LICENSE WHERE iEndDate=«_Today»;0;4»
<a href=’/Scripts/sql.exe?SqlDB=«SqlDB»&xid=«xid»&Sql=AddOn:ViewAllFinLics.phs

&_MerchantId=«_MerchantId»&_CustomScriptId=«_CustomScriptId»’>
View all

«ENDIF»

«ENDIF»

The final result is shown at Fig.B.18.

70

Figure B.18: The custom headline resulting from Code 18.

B.8.0.1 Content of a click-link

The following code (19) shows how the linked script AddOn:ViewAFinLicense.phs could
be implemented : in fact, via an INCLUDE it uses again the AddOn:ViewLicense.phs one
(B.7.2.2), giving it the all parameters it needs (merchant, custom script and subscription
identifiers). Also, ossbo:Header.phs (B.3.2) is used so as to give to this page the same
style as others.

Code 19 AddOn:ViewAFinLicense.phs : an example of a linked script from an event
control.

«INCLUDE ossbo:Header.phs;_Title="View finishing license";_Style="print";»

<H1>View finishing license</H1>

«INCLUDE AddOn:ViewLicense.phs;_MerchantId=«_MerchantId»;
_CustomScriptId=«_CustomScriptId»;_SubscriptionId=«_SubscriptionId»»

<P>
<input type="button" value="Send mail invite"
onClick="window.location.href=’/Scripts/sql.exe?SqlDB=«SqlDB»&xid=«xid»
&Sql=AddOn:InviteMailSend.phs&_MerchantId=«_MerchantId»
&_CustomScriptId=«_CustomScriptId»&_SubscriptionId=«idSubscription»’>

The output of this is featured at Fig.B.19.

The button at the end redirects to a AddOn:InviteMailSend.phs script aimed at
sending an automated email to the client whose subscription is finished, inviting her/him
to start it again : this uses Blue Chameleon email features and is going to be explained
below.

71

Figure B.19: A finished "license", as accessed directly from the event control.

B.9 Advanced developing : using Blue Chameleon’s
mail gate

While Blue Chameleon offers a wide palette for confirmation, invoice-reminding,... emails,
you nonetheless might want a specific kind of email to be sent, as requested by your add-
on’s features.

For instance, in the add-on example that has been used throughout this chapter, one
might want, by a single click, to generate and send an email to a client whose particular
subscription has just ended in order to propose her/him to renew it. Code 20 then shows
how it could be done, through a AddOn:InviteMailSend.phs script.

First, calls to information scripts enable to :

• ossbo:OSSSubscriptionInfo.phs : get the name of the subscription article and
the order number related to this finished subscription ; client identifier too, under
the form Param=5 (for instance), which needs a string extract and cast to be done ;

• ossbo:OSSClientInfo.phs : get client’s email, title (Mr, Mrs,...) and last name ;

• ossbo:OSSMerchantInfo.phs : get your Merchant’s email and name.

Then, mail-related commands are called, first to declare sender as your merchant
email (MAIL FROM), recipient as the client email (MAIL TO) and a mail subject featuring
the name of the subscription article (MAIL SUBJECT).

Next, the mail’s text itself begins, between a OUTPUT MAIL.../OUTPUT environment,
in which OSL commands can be used. A MAIL SEND finally sends this text to the client’s
email and user is informed of the success of the sending.

72

Code 20 AddOn:InviteMailSend.phs This script sends a dedicated email to a single
client.

«*Subscription identifier _SubscriptionId and _MerchantId must be inherited from
calling script !*»

«VAR NEW _ClientId=""»
«VAR NEW _SubscriptionName=""»
«VAR NEW _OrderNumber=""»
«INCLUDE
ossbo:OSSSubscriptionInfo.phs;_MerchantId=«_MerchantId»;_SubscriptionId=«_SubscriptionId»»

«LET _ClientId=@toi(@substr(_ClientId;6;-1))»

«VAR NEW _ClientEmail=""»
«VAR NEW _ClientTitle=""»
«VAR NEW _ClientName=""»
«INCLUDE ossbo:OSSClientInfo.phs;_MerchantId=«_MerchantId»;_ClientId=«_ClientId»»

«VAR NEW _MerchantEmail=""»
«VAR NEW _MerchantName=""»
«INCLUDE ossbo:OSSMerchantInfo.phs;_MerchantId=«_MerchantId»»

«MAIL FROM «_MerchantEmail»»
«MAIL TO «_ClientEmail»»
«MAIL SUBJECT About your «_SubscriptionName» subscription...»

«OUTPUT MAIL»
Dear «IF _ClientTitle<>""»«_ClientTitle»«ENDIF» «_ClientName»,

Your subscription «_SubscriptionName» (order Nr «_OrderNumber») has just expired
today !

If you are satisfied with our services, we invite you to renew it.

Kind Regards,

The «_MerchantName» Team
«/OUTPUT»

«MAIL SEND»

«IF #SQLSTATUS#==1»
Email successfully sent to «_ClientEmail»».

«ELSE»
ERROR : Could NOT send mail to «_ClientEmail»».

«ENDIF»

73

B.10 Communication add-on to add-on, and shop to
add-on : the oss- scripts

Blue Chameleon’s great force is that it allows one add-on to perform actions (such as
viewing/searching contents, adding an element,...) on an other add-on. Also, when some
actions are done in the Shop, some scripts belonging to add-ons, if defined, can be trig-
gered.

This all relies on the concept of objects in an explicit manner (in the case of add-on to
add-on) or implicit manner (shop to add-on), An object is defined by a triplet of values :

• the identifier of the library if belongs to, as defined in the add-on’s ossModuleRegister.phs
script B.3.1.1 ;

• an identifier to qualify the type of this object ;

• an identifier for the object itself.

As variables, these values are often called _LibraryId, _ObjectTypeId and _ObjectId.
Inside an add-on, this triplet fully identifies an object.

By principle, an add-on cannot directly act on the objects of an other add-on, but
instead calls scripts belonging to the Shop, which then serves as an intermediary ; it will
then call the relevant script aimed add-on (Fig.B.20). The Shop, on the other hand, can
act on any add-on, if the corresponding scripts have been implemented for them. These
scripts have standardized names. A Shop’s script always starts by OSS... ; an add-on
script by oss-

For instance, if add-on "Alpha" wants add-on "Beta" (registered as 1003) to display
a list of its objects Widget (which are for instance type 2), the following call is written
in add-on Alpha :

«INCLUDE
ossbo:OSSObjectSearch.phs;_MerchantId=«_MerchantId»;_ObjectTypeId=2;_LibraryId=1003;
[Other parameters]»

The shop script’s OSSObjectSearch.phs will then call add-on Beta’s ossObjectSearchObj.phs
script (which has to be developed) with several parameters amongst which the object type.

Several scripts of this kind exist ; their name all start with oss-. Once developed, they
have to be registered in order to be usable.

B.10.1 Registering oss- scripts

As any oss- script is written, a recheck of the library must be done, through

Library name .

Registered oss- scripts as well as objects available for a add-on (see below) can be
checked from the previous link (Fig.B.21).

74

Figure B.20: The principles of add-on to add-on and shop to add-on inter-
actions.

B.10.2 Recording objects inside an add-on

For objects to be handled inside an add-on, they have to be registered first through a
ossModuleInit.phs script where the types of the various objects are recorded through
a Shop’s script. Code 21 shows how ossModuleInit.phs is made.

Code 21 ossModuleInit.phs This records add-on Beta’s objects.

«LET _ObjectTypeName="Gizmo"»
«INCLUDE ossbo:OSSObjectTypeAdd.phs;_ObjectType=1;_ObjectTypePrefs="00"»
«LET _ObjectTypeName="Widget"»
«INCLUDE ossbo:OSSObjectTypeAdd.phs;_ObjectType=2;_ObjectTypePrefs="00"»

There, the add-on’s objects Gizmo and Widget are thus respectively recorded with
the types 1 and 2.

Once done, the library must be recompiled and rechecked (B.10.1).

B.10.3 Integrating properties in an add-on

In the following example, the add-on in which to include properties has ’1003’ as identifier
(B.3.1.1).

75

Figure B.21: Objects and scripts that an add-on possesses.

B.10.3.1 Registering the properties to be used

For instance, we want to use two properties called ’Active’ for a client and ’Rank’ for a
salesman.

The add-on’s script ossModuleInit.phs (B.10.2) must then contain :

«VAR NEW _Name1="Active;Actif;Aktiv"»
«INCLUDE ossbo:OSSObjectPropAdd.phs;_MerchantId=«idMerchant»;
_ObjectLibraryId=0;_ObjectType=1;_PropLibraryId=1003;
_PropId=1;_PropertyName=_Name1»
«VAR NEW _Name2="Rank;Rank;Rank"»
«INCLUDE ossbo:OSSObjectPropAdd.phs;_MerchantId=«idMerchant»;
_ObjectLibraryId=0;_ObjectType=14;_PropLibraryId=1003;
_PropId=2;_PropertyName=_Name2»

76

There :

• _ObjectLibraryId is the identifier of the library of the objects for which to handle
properties (here, 0 for Shop) ;

• _ObjectType is the type of the objects for which to handle properties (here, 1 for
Clients and 14 for Salesmen) ;

• _PropLibraryId is the identifier of the add-on, 1003 ;

• _PropId is the identifier of the property inside the add-on (here, 1 and 2) ;

Once done, the library must be recompiled and rechecked (B.10.1).

B.10.3.2 Creating the properties

Now, the properties themselves must be created inside the Property add-on (B.22).

Figure B.22: Creating the properties.

There, ’Type : System’ must be chosen as well as the type of object ; the previously
registered property will then appear in the ’Property name’ listbox.

That property has then to be configured.

B.10.3.3 Using properties inside the add-on

B.10.3.3.1 Getting the list of properties Inside add-on as identified by 1003, the
following call allows to retrieve a string of registered properties along with their data :

«VAR NEW _PropObjectList=""»
«INCLUDE
_PropObjectList=Property:PropertySystem.phs#GetPropertyObjectList;
_PropLibraryId=1003»

77

The result string is ...;<PropId>,<PropertyOwnId>,<LibId>,<ObjId>;... where
<PropId> is the property’s identifier inside add-on 1003 (i.e. 1, 2), <PropertyOwnId> is
the property’s identifier inside Property add-on (e.g. 27, 28) and <LibId>,<ObjId> are
the libraries and object types of the handled objects (i.e 0,1 and 0,14).

So in this example, we would get 1,27,0,1;2,28,0,14;.

The <PropertyOwnId> values are used to set and get property values, so that string
has to be obtained and exploited before doing anything.

B.10.3.3.2 Creating a property value If for instance we want to set the value ’6’
for Property #2, for a (salesman) object _SomeSalesmanId, first we get the _PropObjectList
as shown above ; by cutting the string along ’;’ and using value ’2’ as a locator we then
extract the property’s own identifier, ’28’.

The following is then done :

«INCLUDE Property:PropertySystem.phs#SetPropertyObjectList;
_PropertyId=28;_LibraryId=0;_ObjectType=14;_ObjectId=«_SomeSalesmanId»;
_Value1=6;_Value2=...;_Value2=...;_Mode=2»

This will insert ("_Mode=2") a property ’Rank’ with _Value1=6 for object (0,14,_SomeSalesmanId).

B.10.3.3.3 Removing a property value To remove a property entry for an ob-
ject identified by (0,14,_SomeSalesmanId), the same call as above is made, but using
_Mode=1.

B.10.3.3.4 Setting a property value If we want to change a property value with
a unique occurrence (and what’s more, even if we don’t know whether it already exists),
’remove’ and ’insert’ calls can be made successively.

B.10.3.3.5 Fetching a property value In order to retrieve the value of a property
for an object identified by (0,14,_SomeSalesmanId), the following call is made :

«VAR NEW_PropertyValueList=""»
«INCLUDE Property:PropertySystem.phs#GetPropertyObjectValueList;
_PropertyId=28;_LibraryId=0;_ObjectType=14;_ObjectId=«_SomeSalesmanId»»

The result string _PropertyValueList has the following format : ...@<iOrder>;<iValue1>;
<iValue2>;<iValue3>@.... There are several chunks separated by ’@’ if there are mul-
tiple entries for that object and property. In that example, we would simply retrieve
’@6,0,0,0’.

78

B.10.4 Object management-related scripts

These are add-on to add-on scripts.

Inside an add-on A, a shop script is called with parameters, thus calling another add-
on B’s oss- scripts with certain output parameters.

Action to perform in B Shop script to be called in A Result script in B
Adding a new object ossbo:OSS_ObjectAdd.phs;... ossObjectAdd.phs
Deleting an object ossbo:OSS_ObjectDelete.phs;... ossObjectDelete.phs
Modifying an object ossbo:OSS_ObjectModify.phs;... ossObjectModify.phs
Name of an object ossbo:OSS_ObjectInfo.phs;... ossObjectQueryInfo.phs
Viewing an object ossbo:OSS_ObjectView.phs;... ossObjectView.phs

Input parameters for the ossbo:OSS... calls are _MerchantId, _LibraryId (register
id of add-on B), _ObjectTypeId (of the object to add, delete, modify,view, ...) and,
except for ossbo:OSS_ObjectAdd.phs;..., _ObjectId (as deleting, modifying, getting
the name of or viewing a specific object require it to be fully defined by the triplet).

On add-on B’s side, these parameters are then retrieved as they are. The oss...
scripts in Add-on B should be developed so as to respectively perform the actions of
adding, deleting, modifying or viewing and object.

Code 22 shows how, for instance, a ossObjectAdd.phs script can be implemented in
add-on B.

Code 22 An example of template for a B:ossObjectAdd.phs script.

«IF @toi(_ObjectId)==1 »
«*perform actions to add an new object of type 1...*»

«ELSEIF @toi(_ObjectId)==2 »
«*perform actions to add an new object of type 2...*»

...
«ENDIF»

It is to note that, should an add-on contain several objects, the «IF @toi(_ObjectId)==1»
... «ELSEIF @toi(_ObjectId)==2» ... «ENDIF» template must always be used.

B.10.4.1 Example : link to view an object, featuring object’s name

The following line code (to put in the originating add-on A) outputs a link to the
ossObjectView.phs of an object of add-on B :

<a
href="/Scripts/sql.exe?xid=«xid»&SqlDB=«SqlDB»&_MerchantId=«_MerchantId»

79

&_LibraryId=«_idRefObjectLibrary»&_ObjectTypeId=«_idRefObjectType»&
_ObjectId=«_idRefObject»&Sql=ossbo:OSS_ObjectView.phs">«_ObjectName»

The _ObjectName had been recuperated thanks to a call to ossbo:OSS_ObjectInfo.phs :

[In A :]
«VAR NEW _ObjectName=""»
«INCLUDE
ossbo:OSS_ObjectInfo.phs;_MerchantId=«_MerchantId»&_LibraryId=«_idRefObjectLibrary»
&_ObjectTypeId=«_idRefObjectType»&_ObjectId=«_idRefObject»»

[In B, : ossObjectQueryInfo]
«SQLEXEC STRING _ObjectName=SELECT azName FROM ... (use _ObjectTypeId,
_ObjectId as query parameters)»

B.10.5 Searching for an object

B.10.5.1 On all libraries’ objects

Some add-ons might handle objects from several libraries ; therefore, in order to provide
a choice of all available objects, a dedicated Shop script ossbo:OSSObjectSearch.phs
can be called in the following way in add-on A :

«INCLUDE
ossbo:OSSObjectSearch.phs;SqlReturn="A:newObject.phs";_MerchantId=«_MerchantId»;
«CustomScriptId=«_CustomScriptId»»

This code produces the following output :

The drop-down menu shows all objects available in all libraries ; choosing a partic-
ular object then steers to the corresponding library’s ossObjectSearchObj.phs script,
with, amongst other parameters, the following CGI variables :

• _SearchObjectTypeId, a string which value is <value of chosen library id>:<value
of chosen object type> ; type can be extracted through, for instance, «VAR NEW
_TypeId=@item(2;_SearchObjectTypeId;3) ;

• SqlReturn, which serves as to memorize which script of add-on A to come back to
when object in ossObjectSearchObj.phs is specifically chosen.

The ossObjectSearchObj.phs must provide a form in which objects of type _TypeId
(extracted as shown above) are displayed, with a submit address equal to SqlReturn, the
chosen object’s triplet being well-defined CGI-wise.

80

B.10.5.2 On a specific library, or specific library’s object type

If on the other hand, the library on which to search objects is known, the call to
ossbo:OSSObjectSearch.phs as shown above has to include a further parameter ;_LibraryId=....

Furthermore, if the type of object must be forced, the following must be added :
...;_LibraryId=...;_ObjectTypeId=....

B.10.6 User-related oss- scripts

The ossUserConfig.phs and ossUserModify.phs have been respectively detailed at
B.5.3.1 and B.5.3.2 ; as a reminder, their function is to display an add-on’s custom user
rights on Shop’s Modify User Page and to record the modifying thereof.

Other add-on-oriented scripts can be launched when users are managed.

Event in the shop Script to implement in add-on A Parameter to use
A new user is added ossUserAdd.phs _UserId
A user is deleted ossUserDelete.phs _UserId

For instance, if add-on A is equipped with an ossUserAdd.phs script, this very script
will be triggered each time that a new user is added in the shop. This can be useful
for instance if add-on A has a table that requires users to be recorded therein : as a
new user is created, A:ossUserAdd.phs will be launched, executing for instance INSERT
INTO A_TABLE_USERS VALUES («%:d;_UserId», ...), _UserId being the shop’s inher-
ited variable identifying the new user.

When a user is removed from the shop, an action of deleting a user from some ta-
ble of add-on A can also be triggered in a similar manner thanks to an implemented
ossUserDelete.phs script.

B.10.7 Article-related oss- scripts

If an article has a defined back-office library (as set on the Add, Modify Article Page),
the following scripts can be developed in the corresponding library each time a specific
action has been done on this article, which is identified as _ArticleId in these scripts :

Action Launched script in back-office library
Article _ArticleId has been added ossArticleAdd.phs
Article _ArticleId is viewed ossArticleView.phs
Article _ArticleId’s Modify page is displayed ossArticleEdit.phs
Article _ArticleId has been modified ossArticleModify.phs
Article _ArticleId has been deleted ossArticleDelete.phs

81

ossArticleView.phs and ossArticleEdit.phs are used to display view/modify add-
on-related information or attributes on the View/Modify Article pages ; therefore, those
scripts must contain the following template :

<TR>
<TD>

Some add-on article attribute...
</TD>

</TR>
<TR>

<TD>
Value of that attribute, fetched using _ArticleId, in a View

or Modify way
</TD>

</TR>

Currently, ossArticleEdit.phs is only used at the Modify Subscription Page (using
an _EditMode variable equal to 6) and must follow this template :

«IF @exists("_FirstMod")==1»
«IF _EditMode==6»

(template with TRs, TDs)
«ENDIF»

«ENDIF»

B.10.8 Client-related oss- script

A ossClientAction.phs script can be developed to perform actions in add-on A’s tables
whenever a client is managed in the shop. Recuperated parameters that are to be used to
develop this script are _ClientId (identifier of the client that is acted on) and _Action,
describing what is currently/has been done on the client :

Action Value of _Action
Client _ClientId has been added 1
Client _ClientId has been modified 2
Client _ClientId has been deleted 3
Client _ClientId’s Modify Page is displayed 5
Client _ClientId is checked for reference (before deletion) 6
Client _ClientId’s Management Page is displayed 7

Generally speaking ossClientAction.phs has to follow this template (if add-on re-
quires those actions to be done), using _ClientId to identify the client :

«IF _Action==1»
(for example insert this new client in a table)

«ELSEIF _Action==2»
(update some stuff related to that client)

82

«ELSEIF _Action==3»
(delete that client from some table)

«ELSEIF _Action==5»
(content that will be seen on the Modify Client Page)

«ELSEIF _Action==6»
(check if client is referenced some table of the add-on ; RETURN
1 if he isn’t, RETURN 0 otherwise)

«ELSEIF _Action==7»
(content that will be seen on the Client Management Page)

«ENDIF»

Values of 5 and 7 allow the add-on to output on the Modify/View Client pages
custom content, similarly as the ossArticleEdit.phs and ossArticleView.phs scripts
as used for articles B.10.7. Their template must then use TRs and TDs.

B.10.9 External system-related scripts

The following scripts are launched inside any add-on which has them, they will be trig-
gered when performing actions in the external system and thus will allow to export data
pertaining to add-on A similarly as for invoices, payments... The available variable is the
identifier of the export _ExportId :

Action Launched script
Count add-on’s elements to be exported ossExportCount.phs
Export add-on’s elements to external system ossExportExternal.phs
Export in add-on is validated ossExportValidate.phs
Export in add-on is canceled ossExportCancel.phs

B.10.9.1 Examples of implementation

If for instance, in add-on’s A, table PAYMENT_DATA contains information (references, post-
ing dates, debit/credit amounts) that may be exported to the external system, the oss-
scripts as mentioned are to be used.

B.10.9.1.1 ossExportCount.phs First, as in the shop, elements to be exported are
first counted, this shall also be done for add-on A’s data. The following code offers an
example of how ossExportCount.phs could be implemented : along certain conditions
(for instance, of dates), relevant data in PAYMENT_DATA is counted and result must be
RETURN’ed to be used by the Shop.

«VAR NEW _Count=0»
«SQL SELECT COUNT(*) FROM PAYMENT_DATA WHERE <conditions>»
«RETURN _Count»

83

B.10.9.1.2 ossExportExternal.phs Code 23 shows how the template with which
this script should be implemented.

There, it can be noted that, for transaction to be exported, some Shop scripts related
to exports must be called :

• ossbo:ProcExport.phs#ExportTransBegin : start the export of the transaction.
Mandatory parameters : _Reference of the transaction posting, value date vari-
ables for the transaction (_PostingDay, _PostingMonth,_PostingYear, _ValueDay,
_ValueMonth, _ValueYear) and an identifier for the user who does it (_IdUser) ;

• ossbo:ProcExport.phs#ExportPostingTag : write each movement of the transac-
tion. Mandatory parameters : a transaction _Reference, an account _IdAccount,
_Credit and _Debit values and a _Label ;

• ossbo:ProcExport.phs#ExportTransEnd : close the transaction. No parameter.

Therefore, the data from the relevant table in the add-on might be extracted so that
it respects this framework.

Code 23 An example of template for a ossExportExternal.phs script.

«*Initialize a few date variables before...*»
«SQLOUTPUT»
«INCLUDE

ossbo:ProcExport.phs#ExportTransBegin;_Reference="PMA«azRefTransac»";
_PostingDay=«_D»;_PostingMonth=«_M»;_PostingYear=«_Y»;
_ValueDay=«_D»;_ValueMonth=«_M»;_ValueYear=«_Y»;
_IdUser=«#SQLUSERID#»»
«SQLOUTPUT»
«INCLUDE

ossbo:ProcExport.phs#ExportPostingTag;_Reference="PMA«azRefTransac»";
_IdAccount=«idAccount»;_Credit=«mCred»;_Debit=«mDeb»;_Label=«azLabel»»
«/SQLOUTPUT SELECT(*) FROM PAYMENT_DATA WHERE idTransac=«idTransac»»
«INCLUDE ossbo:ProcExport.phs#ExportTransEnd»

«/SQLOUTPUT SELECT idTransac, azRefTransac, <etc.> FROM PAYMENT_DATA
<conditions>»

«IF #SQLSTATUS#==0 AND @toi(_SqlStatus)==0»
«SYSTEM ECHOLOG EXPORT FAILED IN A !»

«ELSE»
«SQL UPDATE PAYMENT_DATA SET idExport=«%d;_ExportId» WHERE

<conditions>»
«ENDIF»

At the end, the success of the export is tested ; if they were done successfully, it
is possible to update the relevant table of the add-on with the identifier of the export,
_ExportId.

84

B.10.9.1.3 ossExportValidate.phs As a value of 1 is expected for a Shop export
to be validated, this script simply consists in

RETURN 1

B.10.9.1.4 ossExportCancel.phs This script, as launched when the export is can-
celed, may consist in using _ExportId to identify the export, and act on add-on A’s
related table as a consequence, for instance setting there its value back to 0 :

«SQL UPDATE PAYMENT_DATA SET idExport=0 WHERE idExport=«%d;_ExportId»»
«IF #SQLSTATUS#==0»
«SYSTEM ECHOLOG EXPORT CANCELLATION FAILED IN A !»
«RETURN 0»

«ELSE»
«RETURN 1»

«ENDIF»

Whether this operation was successfully done or not, a value of 1 or 0 is returned to
the Shop.

B.10.10 Other shop-related oss- scripts

The following table sums up those non-object-specific, mostly related to events such as
login, logout, etc.

Script in add-on A Function
ossModuleRegister.phs Identifies the add-on (mandatory, B.3.1.1)
ossModuleInit.phs Registers the add-on’s objects (B.10.2)
ossModuleLogin.phs Will be launched each time a user logs in
ossModuleLogout.phs Will be launched each time a user logs out
ossModuleHeadline.phs Outputs an event control on user’s desktop (B.8)
ossModuleLoad.phs Is triggered when main page’s menu is loaded
ossModuleMessage.phs Can be used to display a message on main page

(old interface, obsolete)
ossModuleObjectType Returns the list of object types (obsolete)

85

86

Appendix C

Developing your Front-Office with Blue
Chameleon

C.1 What a Front-Office (FO) is
In the previous, the developed add-on was aimed to be used in the Back-office. Now, it is
possible to develop an add-on through which through which your clients may for example
check products, order them... In other words, a Front-Office.

A Front-Office, which will be used outside your Shop environment, has several differ-
ences with a ’regular’ add-on :

• the library constituting the Front-Office does not need to be registered, just com-
piled and uploaded ;

• no menu element needs to be set ;

• the Front-Office may entail ’static’ HTML pages, as a whole, or as headers, footers...
;

• nonetheless, the database used for the Front-Office remains the same as the one
used for your Shop.

Simply put, any page for your Front-Office might be composed in two different ways
: either entirely static (as .html) or ’dynamic’ (as .phs). This all depends on whether
you want to want database operations to be performed right on this page or not.

In the following, the compiled library containing your Front-Office scripts will be
called (for instance) MyFO.

C.1.1 Static pages

They contain only HTML language. When fully composed, this page is uploaded unto your
PublisherHome and will then be accessible through

http://www1.inc.lu/IncShop/IncModelShop/[YourShopName]/Welcome.html

87

As a matter of fact, it is the same root as your Back-Office login page :

http://www1.inc.lu/IncShop/IncModelShop/[YourShopName]/osslogin.htm)

Links on this static page could point to other static HTML pages - also to be put in the
PublisherHome - and linked to as, for instance :

...
About us
...

Images can be uploaded in the PublisherHome, unto the /images directory :

...

...

Linking to pages calling .phs scripts (dynamic pages) can be done as explained below.

C.1.1.1 Dynamic pages

In the following, upon click on the uploaded image images.jpg, your ShowItems.phs
script belonging to your Front-Office library MyFO is called with some parameter, thus
displaying a dynamic page :

...

...

C.2 How a FO page can be ideally structured

While the composing of any page of a Front-Office is free, some time-saving guidelines
can nonetheless be used : each page can ideally be made of three elements (Fig.C.1) :

• a Header, containing a banner and clickable menu elements ; also possibly a side
menu ;

• Contents, varying from page to page ;

• a Footer, containing for instance a copyright line.

Of these, only the Header and Footer are constant from page to page, thus constituting
Header.phs and Footer.phs scripts.

88

This example makes use of "dynamic" (.phs) header and footer ; if they do not
contain OSL code, they can also well be written as Header.html and Footer.html
files. Nevertheless, the dynamic choice is better, as :

• it does not matter if a .phs script only contains html code ;

• it allows the potential inclusion of OSL code - if needed in the future - without
changing anything in the other scripts ;

• header and footer files are uploaded through the MyFO library altogether with
the other scripts, which saves the further upload to PublisherHome.

Figure C.1: An example of how any Front-Office page can be built.

The general outline of this example Welcome.phs script is then shown at Code 24.

Code 24 An all-purpose template for a Front-Office Welcome.phs page.

«INCLUDE
MyFO:Header.phs;_Title="Welcome;Bienvenue;Willkommen";_SideMenu="MyFO:SideMenuProducts.phs"»

<H1>Hello and welcome. Here you will find info about...</H1>

«INCLUDE MyFO:Footer.phs»

89

C.3 Header and footer structure

The particular structure of these depend on how you want your page to be laid out.
Nonetheless, the following provides some useful ideas.

C.3.1 A Front-Office Header

Code 25 shows a basic structure of a Header.phs file to be included as shown in the
previous code.

Code 25 An example of a Header.phs script.

<!DOCTYPE ...>
<html>
<head>
...
<link rel="stylesheet" href="/css/MyFO.css"/> ...
<title>«=@languageitem(_Title)»</title>
...

</head>
<body>

...
«IF @exists("_SideMenu")==1»
<div class="menu_side">
«INCLUDE «_SideMenu»»

</div>
«ENDIF »
<!--begin contents-->

There :

• usual HTML opening/closing tags are used, leaving the <html> and <body> environ-
ments open ;

• a stylesheet MyFO.css (as previously uploaded to the /css directory of the Publish-
erHome) is called, giving the page its background color, class attributes,... ;

• the page is given a title, as an interpreted multilingual string (B.3.3), received as
argument _Title when Header.phs was called ;

• a banner image is displayed, as a click-link to the Home.phs script. Next, several
menu elements can be implemented, such as click-links to for instance Product,
Register,... pages ;

90

• a test is performed whether a _SideMenu variable had been passed as an argument
during call to Header.phs. If yes, it is the name of the script to display (for instance
SideMenuProduct.phs). The style given there in the div is featured in MyFO.css.

Then, the contents themselves are left to be written in the script calling this Header.phs.
After those contents, a call to Footer.phs will close all previously opened tags, wherever
in Header.phs or in the contents.

C.3.2 A Front-Office Footer

Code 26 shows an example of a Footer.phs file.

Code 26 This example Footer.phs closes tags opened in Header.phs (Code 25).

<!--end contents-->
<HR>
<center> c©2010 Company, Ltd - All Rights Reserved.</center>

</body>
</html>

C.4 Blue Chameleon’s available Front-Office scripts

C.5 Client’s interface

C.6 Advanced FO developing

C.6.1 Is a client connected ?

91

	The OSL Scripting Language
	Writing and running OSL scripts
	Syntax overview
	Commands
	Functions
	HTML code
	Comments

	OSL variables
	Managing variables
	Declaring and assigning
	Test of existence
	Local environments
	Deleting variables

	Types
	Casting

	Naming
	Evaluating variables
	Predefined variables

	Including : script files, procedures
	Calling other files
	Passing variables to a called script
	Persistence of variables as used in a called script

	Calling procedures
	Calling procedures from other files

	Including other files

	Programming instructions
	Tests
	Loops
	Loop counter

	OSL and SQL
	Performing a SQL command
	Result-less queries
	Queries with results

	Displaying contents of a SQL table
	SQL transactions
	Disabling autocommitting

	Useful things to know

	Use of files
	Creating and/or opening a file
	Reading from a file
	Writing into a file
	Closing a file

	Various mathematical functions
	Date and Time functions
	Getting current date/time
	Getting any date/time
	Functions using Unix time reference
	Functions using Serial date/time

	String functions
	Declaring, concatenating
	Tests on a single string
	Extracting parts of a string
	To and from any position
	To and from any character

	Comparison of two strings
	Equality
	Containment

	String manipulations functions
	Shifting to lower-/uppercase
	Simplifying strings
	Replacing parts of a string

	Use of strings with special characters
	In SQL queries
	For display on the screen
	For Javascript
	For URLs
	Various string functions

	MAIL functions

	A guide to developing your Blue Chameleon Add-On
	The structure of a Blue Chameleon Add-on
	How .phs pages are interpreted and displayed

	Basics of add-on developing : how it is integrated
	Compiling your .phs files
	Uploading your library and files
	Registering your add-on
	Setting a new menu script and a menu element for the add-on
	Setting the add-on's access rights

	Basics of add-on developing : how to organize your .phs scripts
	"oss-" scripts : the basics
	ossModuleRegister.phs
	ossUserConfig.phs, ossUserModify.phs

	Headers and footers
	Languages

	Variables, forms, scripts
	CGI variables
	Accessing names and values of CGI variables
	CGI variables and HTML forms
	Creating CGI variables in a form
	Form calling another script

	Conserving variables from one script to another
	CGI variables and javascript functions
	Incorporating other files

	Setting aimed user rights for the add-on
	Getting the current (Menu Script) user rights inside a script
	User rights values

	Fine-tuning the access to add-on's features
	Access to elements of a script
	Access to a whole script

	Making custom library user rights for your add-on
	Building your own ossUserConfig.phs script
	Building the corresponding ossUserModify.phs script
	These two scripts in force
	Incorporating your add-on custom user rights in scripts

	Importing information on Shop data
	Importing user and user group information
	List of users
	Examples of use

	Information on users
	Example of use

	List of user groups
	Example of use

	Information on user groups
	Example of use

	Information on Merchant
	Example of use

	Information on clients
	Example of use

	Information on subscriptions
	Example of use

	Information on orders
	Example of use

	Information on invoices
	Example of use

	Advanced developing : custom scripts
	Adding a custom script
	Subscription-related custom scripts
	Attaching scripts to a subscription article - Effects
	Developing subscription custom scripts : "Display" example
	Subscription events : an example

	Advanced developing : a custom event control
	Content of a click-link

	Advanced developing : using Blue Chameleon's mail gate
	Communication add-on to add-on, and shop to add-on : the oss- scripts
	Registering oss- scripts
	Recording objects inside an add-on
	Integrating properties in an add-on
	Registering the properties to be used
	Creating the properties
	Using properties inside the add-on
	Getting the list of properties
	Creating a property value
	Removing a property value
	Setting a property value
	Fetching a property value

	Object management-related scripts
	Example : link to view an object, featuring object's name

	Searching for an object
	On all libraries' objects
	On a specific library, or specific library's object type

	User-related oss- scripts
	Article-related oss- scripts
	Client-related oss- script
	External system-related scripts
	Examples of implementation
	ossExportCount.phs
	ossExportExternal.phs
	ossExportValidate.phs
	ossExportCancel.phs

	Other shop-related oss- scripts

	Developing your Front-Office with Blue Chameleon
	What a Front-Office (FO) is
	Static pages
	Dynamic pages

	How a FO page can be ideally structured
	Header and footer structure
	A Front-Office Header
	A Front-Office Footer

	Blue Chameleon's available Front-Office scripts
	Client's interface
	Advanced FO developing
	Is a client connected ?

