
Blue Chameleon CMS
(Content Management System)

September 10, 2012

2

Contents

1 Configuring and administration 13
1.1 System interface . 13
1.2 Users and usergroups . 14

1.2.1 Users . 14
1.2.1.1 User groups that a user belongs to 15
1.2.1.2 User management through time 16

1.2.2 User groups . 16
1.2.3 User groups access rights . 16

1.3 Blue Chameleon Content Management System user rights 17
1.3.1 Rights on headlines . 17
1.3.2 Rights on Articles . 18
1.3.3 Rights on page objects . 18
1.3.4 Rights on Images . 18
1.3.5 Rights on Search . 18
1.3.6 Rights on URLs . 18
1.3.7 Rights on columns . 19
1.3.8 Rights on publishing . 19
1.3.9 Rights on Data Base Publishing 20
1.3.10 Rights on Editions . 20
1.3.11 Rights on Background Frames . 20
1.3.12 Rights on Downloads . 20
1.3.13 Rights on Site management . 21
1.3.14 Rights on Article Models . 21
1.3.15 Rights on Headline Models . 21
1.3.16 Rights on Notice boards . 21
1.3.17 Rights on System log . 22
1.3.18 Rights on Scripts . 22
1.3.19 Administrator rights . 22
1.3.20 Rights on Hermetic groups . 22
1.3.21 Information level . 23
1.3.22 Rights on Books . 23
1.3.23 Rights on Book Models . 23
1.3.24 Java option menu . 23
1.3.25 Connection speed . 23
1.3.26 Rights on User management . 24
1.3.27 Rights on Menus, Menu Templates 24

3

1.3.28 Rights on Packages . 24
1.3.29 Rights on Forms . 24

1.4 Columns . 25
1.4.1 Publisher and objects . 25
1.4.2 Creating columns . 25
1.4.3 Managing columns . 26

1.4.3.1 Changing columns . 26
1.4.3.2 Updating columns . 26
1.4.3.3 Backups . 27

1.4.4 Blue Chameleon directory structure 28
1.4.4.1 Virtual columns . 28

1.5 Publisher settings . 28
1.5.1 File types . 29

1.6 FTP profiles . 30

2 Composing content 33
2.1 Principles . 33
2.2 Headlines models . 33

2.2.1 Creating a new headline model 34
2.2.2 Updating a headline model . 35
2.2.3 Contents of a headline model . 36

2.2.3.1 Enriching a headline model with frames 37
2.2.3.1.1 Frame templates used by a headline model . . . 39
2.2.3.1.2 Updating frame number 40

2.2.3.2 Meta Tags . 40
2.3 Frame templates . 41

2.3.1 Creating and updating frame templates 41
2.3.2 "List" frames . 42
2.3.3 "Leaf" frames . 43
2.3.4 Frame style . 44

2.4 Headlines : creation and editing . 45
2.4.1 Editing a headline : a basic example 45
2.4.2 Editing a leaf frame . 46
2.4.3 Editing a list frame . 47

2.4.3.1 Example for a leaf frame as used by a list 48
2.5 Layouts . 50
2.6 Articles and article models . 50
2.7 Managing pages . 50

2.7.1 Publishing pages . 50
2.7.1.1 Multiple publish . 51
2.7.1.2 Scheduled publishing . 52

2.7.2 Properties of headlines . 53
2.7.3 Other management options for pages 54

4

3 Object management 57
3.1 Images . 57

3.1.1 Uploading an image . 57
3.1.2 Image folders . 59
3.1.3 Managing images . 59
3.1.4 Integrating images . 59

3.2 Links . 60
3.2.1 Creating a URL link . 61
3.2.2 Managing URL links . 62
3.2.3 Integrating links . 62

3.3 Scripts . 64
3.3.1 Creating a script - Management 64
3.3.2 Integrating a frame script . 65
3.3.3 Integrating a link style script . 66

3.4 Downloads . 67
3.4.1 Creating a download . 67
3.4.2 Managing downloads . 68
3.4.3 Integrating downloads . 68

3.5 Menus . 69
3.5.1 Menu scripts . 69
3.5.2 Menu models . 71
3.5.3 Creation of a menu . 71

3.5.3.1 Filling of a menu . 72
3.5.3.2 Menu result and integration 74

3.5.4 More complex menus . 75
3.5.4.1 A menu script that handles children menu items 75
3.5.4.2 A menu with children menu items 75

3.6 Forms . 78
3.6.1 Form models . 78

3.6.1.1 Form model management - parameters 78
3.6.2 Defining forms . 78

3.6.2.1 Updating a form . 79
3.6.3 Composing a form . 80

3.6.3.1 Editing a form page . 81
3.6.3.2 Form page element types 82
3.6.3.3 Editing a form page element 84
3.6.3.4 After form is submitted 84
3.6.3.5 A form result . 84
3.6.3.6 A form with several pages 85

3.6.4 Integrating a form . 86
3.7 Variable files . 87

3.7.1 Example of varfile contents . 87
3.7.2 Varfiles as variables . 88

5

4 Other elements 91
4.1 Site management . 91

4.1.1 Uploading files . 91
4.1.2 Creating directories . 92
4.1.3 Managing files and directories . 93
4.1.4 Executing SQL . 93
4.1.5 Export and Import . 95

4.1.5.1 Generating export files - importing them 95
4.1.5.2 Export file contents . 96

4.2 Model defaults . 98
4.2.1 Model defaults and headlines . 98

4.3 Books . 99
4.3.1 Book models . 99
4.3.2 Creating books . 99
4.3.3 Modifying a book . 101

4.4 Notice boards . 102
4.4.1 Creating and managing notice boards 102
4.4.2 Association with a column . 102
4.4.3 Notice board entries . 103

4.5 Editions . 104
4.5.1 General edition management . 105
4.5.2 Publishing editions . 106

4.6 Options . 106
4.6.1 Version . 106
4.6.2 System Logs . 107
4.6.3 Expiration report . 108

4.7 Searching for content . 108
4.8 Management of objects . 110

5 Packages 111
5.1 Mandatory scripts . 111

5.1.1 PackageInstall.phs . 111
5.1.2 PackageGroupModify.phs, PackageGroupModify1.phs 112

5.1.2.1 Result : package group rights 112
5.1.3 PackageMain.phs . 115

5.1.3.1 Result : package main page 116
5.1.4 PackageUninstall.phs . 118

5.2 Package general management . 119
5.2.1 Installing a package . 119
5.2.2 Updating a package . 119
5.2.3 Uninstalling a package . 120

5.3 Using object types and objects to compose headlines 120
5.3.1 Enabling a leaf frame to handle packages and an object 121
5.3.2 PackageObjTypeList.phs . 122
5.3.3 PackageObjectList.phs . 124
5.3.4 PackageObjectName.phs . 124

6

5.3.5 PackageObjectView.phs . 126
5.4 Using attributes . 127

5.4.1 Enabling a frame to handle attributes 127
5.4.2 Scripts for attribute . 128

5.5 Featuring multiple objects on the same headline 129
5.5.1 A leaf frame that handles multiple objects 130
5.5.2 Packages : defining more of them 132
5.5.3 Object and attribute scripts for this case (guidelines) 132

5.5.3.1 The PackageObjectView.phs script for this example . . 134

6 Annex 137
6.1 Leaf frame variables . 137

6.1.1 "Table" variables . 139
6.1.2 "Select" variables . 139
6.1.3 "SQL select" variables . 140

6.2 System script glossary . 140
6.2.1 Headline model scripts . 140
6.2.2 Leaf frame model scripts . 141

6.3 Icon glossary . 143
6.4 Form page elements : detailed . 145

6.4.1 "Active" elements . 145
6.4.1.1 Checkboxes . 145
6.4.1.2 Radiobuttons . 146
6.4.1.3 Listboxes . 146
6.4.1.4 Input field and text area 147
6.4.1.5 Form label - ’with check box’ 148

6.4.2 "Passive" elements . 148
6.4.2.1 Hidden field . 148
6.4.2.2 Form image . 148
6.4.2.3 Form label - ’normal’ . 148
6.4.2.4 Form separator . 149

7

8

List of Figures

1.1 The Publisher’s main page. 13
1.2 Defining a new user. 15
1.3 Groups a user belongs to. 15
1.4 Defining a user group. 16
1.5 The most important access rights as defined for a user group. 17
1.6 Creating a new column. 26
1.7 Updating a column. 27
1.8 The properties of your Publisher. 29
1.9 Defining a FTP profile. 31

2.1 Creating a headline model. 34
2.2 Here, a headline model can be updated and its children frame templates

be chosen. 36
2.3 Thanks to this, the pages created on this model will have meta-tags called

Author, LastUpdate and a Page Title. 41
2.4 Creating a new headline. 45
2.5 First edit ; as both frames use only one template ("Basic text frame" and

"Side Menu List"), so clicking on the icon shows them immediately. . . . 46
2.6 Filling in with information the leaf’s various variables. 47
2.7 A preview of the page. 48
2.8 Populating a list frame. 49
2.9 Publishing several headlines in one single time. 51
2.10 Configuring and viewing data related to headline "Home Page". 53
2.11 Managing headlines in a file system way. 55

3.1 Uploading an image. 58
3.2 Creating a folder for images. 59
3.3 From here, all images and folders can be globally managed. 60
3.4 Integrating an uploaded image. 61
3.5 Creating a link. 62
3.6 Putting a previously-defined URL link. 63
3.7 Creating a script to be used in a leaf frame. 65
3.8 Uploading a file that will be used for downloading purposes. 67
3.9 Integrating a download, with a ’download’ variable. 69
3.10 Creating a menu model. 71
3.11 Creating a menu "Basic top menu" based upon model ’Top Menu’. . . . 72
3.12 Creating a form model. 79

9

3.13 Adding parameters to a form model. 79
3.14 Creating a form based on the example model. 80

4.1 Uploading a file to be used in headline contents. 92
4.2 Creating a new directory, directly under the «#SQLWWWHOME#» root. . . . 93
4.3 Editing a text-based file. 94
4.4 Outputting the contents of a table. 95
4.5 Exporting the current column. 96
4.6 An example of export file contents. 97
4.7 Creating a model default for a headline model. 98
4.8 Creating a book model. 100
4.9 Creating a book. 100
4.10 From here, book elements can be managed. 102
4.11 Creating a general notice board. 103
4.12 Manually adding two entries to this notice board. 104
4.13 Checking one’s own activity for last week. 108
4.14 Performing a search on objects which publishing name begin by ’Josh’. . 109
4.15 From here, any object can be managed. 110

5.1 Modifying this package’s rights for a particular user group. 112
5.2 The main page for package Festivals. 116
5.3 The first install of the package "Festivals". 119
5.4 The process of selecting an object type and an object for a leaf frame that

is package-enabled. 121
5.5 A selection of object types. 123
5.6 Finally choosing the object. 125
5.7 A page design that calls for multiple objects to be featured. 130
5.8 The 3-object frame after all relevant choices of objects and attributes have

been made. 134

6.1 Composing a checkbox selection for a form. 146

10

List of Tables

5.1 Scripts, functions and variables as used for attribute setting 128

6.1 Leaf frame variables . 138
6.2 Leaf frame variables (continued) . 139
6.3 System scripts for headline, list and container models 141
6.4 System scripts for leaves . 142
6.5 System scripts for leaves (continued) . 143
6.6 Blue Chameleon Content Management icons 144
6.7 Blue Chameleon Content Management icons (continued) 145

11

In this Chapter, matters related to Blue Chameleon Content Management System’s
interface as well as usergroup/user prerogatives will be unveiled.

12

Chapter 1

Configuring and administration

1.1 System interface

Upon login with your Admin or User accounts, you will find what is featured at Fig.1.1.
The Publisher page is composed of various links, which are always displayed whichever
page you are on ; therefore any function is easily accessible from anywhere.

Figure 1.1: The Publisher’s main page.

Upon click of a Link, related content then displays below, often with a new group of
links (for instance Modify - Create - Delete) allowing to perform further actions.

In the following documentation, how to access a page will be thus displayed as the
succession of links clicked to access it, as for instance Users / Modify :

13

What is more, links to follow, if there is any ambiguity, will be made more explicit by
the mention of the context : for instance, in the image above, [Admin] Groups would
invite to follow the Groups link that is found right to "Admin".

1.2 Users and usergroups

1.2.1 Users

User group rights for managing Users are detailed at 1.3.26.

Blue Chameleon Content Management System of course allows several users to use
the facilities at the same time ; for that matter, several users can be defined/configured.

Fig.1.2 shows the page where a new user is defined ; there, the following data is
inputed :

• the user’s real name, under which s/he will be known in Blue Chameleon CMS
(maximum length : 20 characters) ;

• login name, used to log on the system using the defined password (for both : mini-
mum length : 5 characters ; maximum length : 10 characters) ;

• the name of your publisher (cannot be modified) ;

• the default column, i.e. which column (1.4) user logs in to by default ;

14

• the default user group (1.2.2) s/he will belong to ; it is to note that, if user belongs
to several user groups (as shown below), this choice defines the group rights that
will be used when accessing the default column (provided that group has access
rights to that default column) ;

• the default language (not implemented yet) ;

• an email address, that will be in use for document publication functionalities.

Figure 1.2: Defining a new user.

1.2.1.1 User groups that a user belongs to

As illustrated in Fig.1.3, for each defined user group, the selected user can be add’ed or
remove’d.

Figure 1.3: Groups a user belongs to.

15

1.2.1.2 User management through time

The data as inputed during user creation can be modified anytime by following Users /
Modify / [User name] Properties.

If needed, a user can be deleted through Users / Delete ; this can only be done user
does not belong to any group anymore.

1.2.2 User groups

User group rights for managing User Groups are detailed at 1.3.26.

User groups are generally managed through groups, where they can be created (Fig.1.4),
modified and deleted (provided they do not contain any user - if case might be, a list of
belonging user(s) is then shown).

Figure 1.4: Defining a user group.

While the data for a user group simply consists in a name, their Access Rights, on
the other hand, leave far greater configuring options.

1.2.3 User groups access rights

From a user perspective, the different Blue Chameleon CMS columns that will be accessed
depend on how the access rights for her/his default user group (as defined in Fig.1.2) have
been defined.

To do so, Fig.1.5 then shows an excerpt of the access rights that can be be configured
for a given user group.

The detailed list of those is explicated next.

16

Figure 1.5: The most important access rights as defined for a user group.

1.3 Blue Chameleon Content Management System user
rights

The access rights of a user group provide an extensive list of functionalities to which
gradual rights can be granted. It is to note that rights are being cumulative, i.e. the
higher value of a right includes the functions granted by the lower levels.

As Fig.1.5 shows, each column has its own set of rights.

1.3.1 Rights on headlines

They define a user group’s rights to handle headlines (2.4).

One of the following values can be set :

• No rights on headlines (the Headlines link will simply disappear from the main
page) ;

• Preview headlines and link to headlines : the Preview link for any headline is
available and links that point to them can be defined ;

17

• Modify headline data : the icon becomes available, allowing to modify a head-
line frame’s data ;

• Modify headline layout : the icon becomes available, allowing to change the
layout selected for a frame (if applicable) ;

• Create and delete headlines, create and delete folders : in addition to free creation
and deletion of headlines, those possibilities are also allowed for folders (4.1.2).

This right is combined with the Column (1.3.7) and Publication (1.3.8) rights.

1.3.2 Rights on Articles

Rights for articles (2.6) are similar to the ones provided for headlines (see above), only
that there is no "layout" right here.

This right is also combined with the Column (1.3.7) and Publication (1.3.8) rights.

1.3.3 Rights on page objects

1.3.4 Rights on Images

Rights for images (3.1) are defined as follows :

• Preview images and use them : images will be allowed to be previewed and selected
when composing a headline ;

• Modify, create and delete images, create and delete folders : user group is omnipo-
tent on image management, and can also create and delete image folders (3.1.2).

This right is combined with the Publication (1.3.8) and Hermetic group (1.3.20)
rights.

1.3.5 Rights on Search

Rights for performing searches on contents (4.7) can be either set to ’No rights’ or ’All
rights’.

1.3.6 Rights on URLs

They either rule if URLs (3.2) can be only previewed and used, or if they can be also
modified, created and deleted.

18

1.3.7 Rights on columns

They rule the access to Blue Chameleon columns (1.4).

The first two levels as listed below combine withHeadline (1.3.1) andArticle (1.3.2)
rights to define what user group can do to headlines and articles (modify, delete) while
the Modify Column and Create Column rights define the object the user group might
access :

• Change columns and limited access to current column : user group has only access
to selected headlines/articles in this column ; objects it has no access to will be
invisible. When defining the rights for a group that has limited access to a column,
the Access Rights / Group name / Modify Object rights link will allow to
define precisely which objects user group has access to ;

• Unlimited access to current column : user group has access to any headline/article
in this column ;

• Modify column : user group is allowed to change the configuration of columns ;

• Create column : user group is allowed to create columns.

1.3.8 Rights on publishing

They rule how user group is allowed to publish (2.7.1) pages. A user group may only
publish the objects it can modify.

The 4-eyes method as mentioned in the rights below is based on the principle that
two different users need to review the document’s contents before it can be published.
This implies that the user who did the last modification will not publish the document
herself/himself, for the modification will have to be validated by another user.

• No publishing allowed for articles, headlines, images, notice boards edition : user
group cannot publish anything ;

• 4 eyes : ready for publishing : if the last modification to the object has been
made by someone else, the user can set the object’s publication status to ’ready for
publication’ ;

• Ready for publishing : user cannot publish the object, but s/he can set its status
to ’ready for publication’ ;

• 4 eyes : Publishing : user is allowed to publish the object, provided that the last
modification has been made by someone else ;

• Publishing : any object that can be modified can be published.

This right is combined with theHeadline (1.3.1), Article (1.3.2) and Images (1.3.4)
rights.

19

1.3.9 Rights on Data Base Publishing

This is an obsolete function that has been replaced by the Data Base Management pack-
age. Depending on the type of user, different menu options are displayed :

• OPS User : this option must be selected so that the standard web-publication
interface is displayed ;

• DBP User : not used anymore

1.3.10 Rights on Editions

Blue Chameleon CMS columns can be configured so that they work in Edition Mode
(4.5) ; the various rights for Editions are :

• Change editions : user can choose the edition in which s/he wants to work ;

• Set active edition : user can define the edition that is currently to be published ;

• Create new edition ;

• Delete edition ;

• Open more than one edition after active one.

1.3.11 Rights on Background Frames

When designing headline template frames (leaves, lists and containers), it is possible to
define a template as being a background frame (2.3.4), so that it will not be accessible
to everybody :

• Background frames do not display : frame is invisible to everyone ;

open button : it is possible to zoom in to background frames, thanks to the appearing

icon ;

• Modify headline data + list manipulation : the and become available in
order to respectively hide/display and modify data in a background frame ;

• Modify headline layout : the becomes available to change the layout of a
background frame by an other template.

1.3.12 Rights on Downloads

Rights ruling downloads (3.4) are as follows :

• Links to download files : only links pointing to downloads can be defined ;

• Modify download files : user can update download files ;

20

• Create and delete download files : in addition to download files, user will also be
able to create and delete folders for downloads ;

• Modify download type : obsolete ;

• Create and delete download types : obsolete ;

1.3.13 Rights on Site management

The management of site (4.1)is ruled by two values, either ’No rights’ or ’All site man-
agement options’. With the latter, user is able to upload, edit, delete and rename files,
create and delete directories as well as execute SQL statements (4.1.4).

1.3.14 Rights on Article Models

They rule how article models (2.6) are managed :

• No rights ;

• Modify article description and image : user can only modify those two items rep-
resenting the template ;

• Modify article model and variables : any kind of modification (except deletion) on
article models is allowed ;

• Create and delete article models : anything can be done for article models.

1.3.15 Rights on Headline Models

They rule how headline models (2.2) are managed :

• No rights ;

• Modify headline description, image and frame style : in addition to headline model
name and representing image, user can alter its frame style ;

• Modify headline model, variables, number of frames and model relations : any kind
of modification (except deletion) on headline models is allowed ;

• Create and delete headline models : anything can be done for headline models.

1.3.16 Rights on Notice boards

They rule how notice boards (4.4) are managed :

• No rights ;

• Add and delete notice board entries : only board entries can be added and removed
to an already-existing notice board ;

• Modify notice board : user can update notice board itself ;

• Create and delete notice board : anything can be done for notice boards.

21

1.3.17 Rights on System log

They rule how system logs (4.6.2) are managed :

• No rights ;

• User’s own log : the user can only see her/his own activity in the system log ;

• User’s current group log : user sees the activities of all users belonging the group
the user is currently logged in as ;

• Log of all groups user belongs to : user sees all the activities of users that belong
to user groups s/he also belongs to ;

• Everything : all activities can be seen.

1.3.18 Rights on Scripts

They rule how scripts (3.3) are managed :

• No rights ;

• Extended edition mode button : in headline mode, the icon appears so that
user is able to change the parameters of the scripts, as well as the scripts that are
selected for frames that handle them ;

• Modify scripts : user can edit any existing script ;

• Create, Delete scripts : user can do anything with scripts.

1.3.19 Administrator rights

Set to either ’No rights’ or ’All rights’, this menu allows in the latter case user to access
the following functions :

• define variables which are shared varfiles,

• frame style button in headline edition mode,

• number of model and frame index for a headline frame (2.2.3.1.2),

• managing FTP profiles (1.6),

• updating Publisher data.

For any other group than ’Administrator’, it is advised to set this menu to ’No rights’.

1.3.20 Rights on Hermetic groups

Certain objects (images, downloads and links), might be required to be available not only
on a column level, but also on the whole publisher (any column thereof). According to
the choice made for this menu, either ’User’s group is open’ or ’User’s group is hermetic’,
user will or will not be able to use objects belonging to the publisher.

22

1.3.21 Information level

This menu holds three choices on how information is displayed :

• No information is displayed ;

• Current menu option is displayed ;

• All information is displayed.

1.3.22 Rights on Books

They rule how books (4.3.2) are managed :

• No rights on books ;

• Preview books : user can only preview books and defined links that point to them ;

• Modify books : user can edit books ;

• Create, delete books : user can do anything on books.

1.3.23 Rights on Book Models

They rule how book models (4.3.1) are managed :

• No rights on book models ;

• Modify books models : user can edit book templates ;

• Create, delete books : user can do anything on book templates.

1.3.24 Java option menu

The options of this menu rule whether Java is used for editing headlines and articles :

• Java disabled : in article/headline edition mode, the standard Blue Chameleon
interface will be used to edit a document’s data (link and image selection, text
input) ;

• Java 1/2 enabled : in article/headline edition mode, Java applets will be available
to edit document’s data.

1.3.25 Connection speed

The options of this menu rule whether Java applets will preview (’Medium’, ’High’) or
not (’Low’) the currently selected image.

23

1.3.26 Rights on User management

They rule how users (1.2.1) and user groups (1.2.2) are managed :

• No rights ;

• Modify one’s own user data : user can only change her/his own information ;

• Create users, for all users : select groups in one’s own groups : user can create
other users S/he can add users to any of the group(s) s/he belongs to ; also, s/he
can remove any user from the group(s) s/he belongs to ;

• Delete users, create/delete groups, change group rights : user can create and delete
users, groups and change their access rights.

1.3.27 Rights on Menus, Menu Templates

They rule how menus (3.5) and menu templates (3.5.2) are managed :

• Select menus

• Modify menus : user can update menu items (change links and labels) and change
their order ;

• Create and delete menu items : anything can be done to menu items ;

• Create and delete menus : anything can be done to menus ;

• Modify menu templates : user can change menu templates ;

• Create and delete menu templates : anything can be done to menu templates.

1.3.28 Rights on Packages

They rule how packages (5) are managed :

• Access installed packages : user can access any installed package ;

• Install and uninstall packages.

1.3.29 Rights on Forms

They rule how forms (3.6) and form models (3.6.1) are managed :

• No rights ;

• Select forms : user can associate a document with a form by selecting the form in
the document’s properties ;

• Modify forms : user can modify, create and delete form elements as well as form
pages ;

24

• Create and delete forms, create and delete folders : anything can be on forms and
folders for forms ;

• Modify form models : user can change the properties of form models ;

• Create and delete form models : user anything can be done on forms and form
models.

1.4 Columns

User group rights for Columns to be handled are detailed at 1.3.7.

The maintenance of a website is generally a several-people job, who update different
parts of the site according to their qualifications and prerogatives. In order to limit users’
access only to the part(s) they are assigned to, Blue Chameleon CMS can be divided into
columns.

While it comes with the default column opsmain, other columns can be easily created.

1.4.1 Publisher and objects

All Blue Chameleon CMS objects belong to the column they were created in. Only a few
objects like images, downloads and links can exist on a Publisher level. Objects that do
behave as if they belonged to all columns of the Publisher.

For instance, a user with deletion rights on images (1.3.4) is able to delete the images
of the columns s/he is currently in, as well the images belonging to the Publisher.

1.4.2 Creating columns

As featured in Fig.1.6, the creation of a column entails the following :

• a description, which will be the name under which this column will appear when a
’Create in:’ or ’Directory:’ menu is featured ;

• Development, Production and Scripts directories : see 1.4.4 ;

• allow it to work with editions (4.5) and in this case give a name for the first edition ;

• make it a virtual column (1.4.4.1) ;

• allow backups (1.4.3.3) to be made ;

• select a parent column (this menu show only virtual columns) ;

• select a FTP profile (1.6).

Once defined, it is necessary to set the column’s access rights (1.3) for each user group.

25

Figure 1.6: Creating a new column.

1.4.3 Managing columns

1.4.3.1 Changing columns

As soon as more than one column than the default one (opsmain) exist, aChange Column
appears on top of the screen (or via Change Column) ; the name of the current column
is mentioned between parentheses :

1.4.3.2 Updating columns

ThroughColumns /Modify, a column can be updated (Fig.1.7), featuring some options
that were present during column creation (column name, parent column, FTP profile and
make Backups options) plus new ones :

26

• a notice board (4.4) to be associated with the column, with automatic/manual
choices for Articles, Headlines, Download and Image objects, to specify whether
Blue Chameleon will automatically place all updates made to the object in the
notice board, or the user will add them manually ;

• a default object expiration period : if choice is else than ’Never’, period of days or
months after which a headline is considered as expired (the countdown begins as
soon as page has been published). If an expiration period has been specified for the
column, Blue Chameleon Content Management System will provide the expiration
report (4.6.3); this report lists all objects that have expired or are about to ;

• a default link style.

Figure 1.7: Updating a column.

1.4.3.3 Backups

If this option had been checked while creating or updating a column, Blue Chameleon
will create a back-up of the currently-published page each time an article or a headline
has been published.

27

While the back-up mode is activated for a column, the restoring of articles/headlines
is also supported, but only applying to the published version of a page (restoring a page
does not undo the changes applied to the article/headline).

1.4.4 Blue Chameleon directory structure

1.4.4.1 Virtual columns

Activating this option for a column will make it contain no object (headline, articles,...)
other than columns. Indeed, a virtual column is used to group several columns under one
name. It will not appear when changing columns (1.4.3.1) but will nonetheless be avail-
able as a ’parent column’ when creating or updating an other column, or when browsing
for objects.

For instance, if the structure has two "stranded", yet-related columns such as "Posters"
and "T-Shirts" , it would be interesting to group those under a same, newly-created par-
ent virtual folder called "Merchandising". This is achieved for both of columns via a
column update (1.4.3.2) where ’Parent folder’ is set to "Merchandising". As a result, the
tree structure has become clearer to manage :

1.5 Publisher settings
From here, as featured in Fig.1.8, the following is configured :

• its name ;

• how often actions are recorded to the System log (4.6.2) :

– ’no logging’ : actions are never recorded ;
– ’always log publish, other actions only once a day’ : only the publishing of

objects is logged as many times it happens ;
– ’all actions are always logged’.

As for the ’time range’ menu, it rules how much time logs are kept before being
automatically deleted (options are 1,2 and 3 weeks, 1 and 3 months) ;

28

• which FTP Profile (1.6) is chosen for the Publisher ;

• an email address and server ;

• what are the normal and secured publisher domains ;

• to which object(s) domain is added to ;

• whether secure downloads and page objects are enabled.

Figure 1.8: The properties of your Publisher.

1.5.1 File types

This page, accessed via the button as seen on the Publisher Settings Page,
allows to define and update which file types are proposed when a "download" object is
created (3.4.1) :

29

1.6 FTP profiles
Blue Chameleon Content Management System handles FTPs.

For them to be used, at least a FTP profile must be created (Fig.1.9), with the
following information :

• a type, amongst ’FTP’, ’SFTP’, ’IIP’ and ’Queue only’ ;

• a name under which this profile will be referred to as ;

• the server address and port for the FTP server ;

• connection information for it such as user name, password and root.

Afterwards, all of these information can be updated through Modify and a FTP
profile can be removed through Delete.

A FTP profile is assessed to the Publisher, on its Settings page (1.5)

30

Figure 1.9: Defining a FTP profile.

31

32

Chapter 2

Composing content

Now that matters related to Blue Chameleon Content Management System configuring
and administration have been dealt with at the previous Chapter, it is time to see how
webpages themselves are composed.

2.1 Principles
Blue Chameleon Content Management System is based upon those simple principles :

• a website is a collection of pages called "articles" and "headlines" ;

• these articles and headlines are created using Article models and Headlines models ;

• these templates include frame templates ;

• articles and headlines are enriched with objects such as images and links and, when
complete, are published on the website.

Frame templates consist in :

• containers, which can contain any type of frame - children frames are in fixed
number, decided during modification of the frame template ;

• lists, which can also contain any type of frame - children frames are in variable
number, added or subtracted when headline or article is edited ;

• leaves, which cannot contain children frames, but exclusively provide Variables to
provide various content input when headline or article is edited.

2.2 Headlines models

User group rights for handling Headline Models are detailed at 1.3.15.

33

2.2.1 Creating a new headline model

Fig.2.1 shows how a headline model can be created.

Figure 2.1: Creating a headline model.

This page shows many provides many elements :

• a name for this new headline model, as well as an image (200x150 pixels is ideal)
that will represent it ;

34

• options for frame style (2.3.4) ;

• an edition script ;

• number of alternate layouts (2.5) ;

• the model type : here, "headline" is chosen but other choices include ’container’,
’list’, ’leaf’ (2.3) and ’book’ (see 4.3.1 for this particular object) ;

• the number of frames (if any) this headline will contain ;

• if headlines already exist, it is possible to choose one upon which the new headline
will be based.

Upon click on the button at the bottom of this page, one is redirect to a
new page where the text of the headline model is inputed, as described as follows.

Most of this data (headline model name, image...) can afterwards be updated through
Headline models / Properties, as explained next.

2.2.2 Updating a headline model

As featured on Fig.2.2, it is possible to update a few of a headline model’s information,
such as its name, model image, frame style, number of layouts and column availability.

Buttons at the bottom of the page respectively allow to changes done to the

form and, if the case, validate . Another button leads to the configuring

of the (2.2.3.2) that headlines created from this model will inherit.

What is more, a link at the bottom of the page allows to select templates that may
be used for child frames, as explained in 2.2.3.1.1.

35

Figure 2.2: Here, a headline model can be updated and its children frame
templates be chosen.

2.2.3 Contents of a headline model

Just after the validating as previously seen, or anytime through Headline models /
Modify, the contents of a headline is inputed/altered.

The following loads for instance the picture "Banner.gif" that has been previously
uploaded (see 4.1.1 on how to upload any file) to the img/ directory :

36

The design.phs script must always be INCLUDE’d in any
headline model’s contents

Basically, here is composed, with HTML and a few OSL code the layout of the headlines
that will be modelled after this headline model.

Of course, Blue Chameleon Content Management System allows to go further by
equipping this headline model with frames.

2.2.3.1 Enriching a headline model with frames

The great flexibility of the Content Management System allows to make a headline model
contain frames that are chosen amongst the list of defined frame templates. Afterwards,
during the editing of the headline itself, those frames will be edited individually.

Code 1 shows how the example headline model’s content is made to contain two
frames, one besides the other.

There, a system script called frame.phs is called with the argument _FrameIndex
corresponding to the number of current frame to insert. There are therefore as many of
those INCLUDEs to be put as the ’Number of frames:’ that was defined during headline
model creation (Fig.2.1).

This code serves as to provide two frames for the headline ; now have to be defined
which frame templates will be proposed by the headline model.

37

Code 1 This headline model will allow two frames :

Headline models / Modify / Main Template :

<HTML>
(...)
<BODY>

«INCLUDE design.phs»

<TABLE>
<TR>
<TD>
«INCLUDE frame.phs;_ParentId=«_FSId»;_FrameIndex=1»

</TD>
</TR>
<TR>
<TD>
«INCLUDE frame.phs;_ParentId=«_FSId»;_FrameIndex=2»

</TD>
</TR>

</TABLE>
(...)

38

2.2.3.1.1 Frame templates used by a headline model The page displaying a
headline model’s properties (2.2.2) also allows to define which frame templates it can use
:

The Add a model link then shows a list of frames (containers, lists and leaves).
One is selected for each numbered frame, or for ’All Frames’, which means any of the
numbered frames will be able to use it. Once a selection is done, something like this is
obtained :

If a mistake was made, a Delete this model link allows to remove any frame tem-
plate from the list of frame templates this headline model can use.

This selection of frame templates also happen for containers and
lists, which likewise accept children frames. .

39

2.2.3.1.2 Updating frame number During development of a website, it can hap-
pen that a headline model has to allow a new frame, or maybe has no use for a spe-
cific frame anymore. Such updates can be proceeded with through Headline models
/ Frame number, where links such as Add a frame or Delete frame n◦... enable to
perform these actions :

2.2.3.2 Meta Tags

These serve as to provide information on a headline (such as the author, the last modify
date,....) and will be inserted automatically into the "header" part of HTML code of the
headline. They are inherited from the headline model on which the headline is based on.

For Meta Tags to be inserted, the headline model contents
must include the following call, in the page’s header :

Headline models / Modify / Some headline model :

<HTML>
<HEAD>
...
«INCLUDE metatags.phs»
...
</HEAD>
(...)

Meta-Tags in use can be configured while at updating a headline model’s properties,
as featured in Fig.2.3.

There, the information give is twofold :

• the document properties, with two already-existing tags Author and LastUpdate ;

they, as well as any other tag that is ’d, can be modified and deleted

40

Figure 2.3: Thanks to this, the pages created on this model will have meta-
tags called Author, LastUpdate and a Page Title.

through the eponymous buttons. ’Type’ as defined for a tag creation must handle
the tag information given afterwards, either a String (of maximum length 80, 255
or 512 characters) or a Page Title (the example here) ;

• the HTTP headers, with the same value types as above, giving the following choice
for header :

– Cache-control
– Content-Encoding
– Content-Language
– Content-Type
– Data
– Expires
– Pragma

2.3 Frame templates
Now that the way of creating frame-using headline models has been thoroughly explained,
it is time to see how frame templates, i.e. container-, list- and leaf models are created.

2.3.1 Creating and updating frame templates

Frames are created in the exact same way as for headline models (Fig.2.1) i.e. through
Headline models / Create except that now ’container’, ’list’ or ’leaf’ is chosen from
the ’Model type:’ menu.

41

Updating a frame also happens in a similar way as for headline models, i.e. through
Headline models / Properties.

According to frame template type, management can vary :

• ’container’ being the only type of frame that contains a fixed number of other
frames, a frame number has to be given during creation. The including of chil-
dren frames (2.2.3.1), their selection (2.2.3.1.1) and the updating of frame number
(2.2.3.1.2) happen similarly as for headline models ;

• for ’list’ type of frame, only the selection of used children frames must be done ;

• for ’leaf’ type, no child frame exist ; but on the other hand, suitable variables must
be given.

2.3.2 "List" frames

A list frame template is quite particular : indeed, during the editing of a headline (see
2.4.3), it will allow, thanks to certain icons, to add (or remove) as many list elements as
needed ; those list elements are frames.

For this, the list frame template’s contents are set as shown in Code 2.

Code 2 A simple list frame.

Headline models / Modify / Side Menu List :

«VAR NEW _ItemCount»
«INCLUDE ListItems.phs;_ListFrameItems="_ItemCount"»
«IF _ItemCount>0»
«SQLREPEAT» <!– element «#SQLREPEAT# »–>
«INCLUDE frame.phs;_ParentId=«_FSId»;_FrameIndex=«#SQLREPEAT#»»

«/SQLREPEAT 1;«_ItemCount»»
«ENDIF»

There, the number of items (frames) in the list is counted ; then, if there are frames,
through the SQLREPEAT loop, each of them is INCLUDE’d.

It is then necessary to create frames (e.g. ’Simple List Element’)
that will be supported by the list frame.

42

2.3.3 "Leaf" frames

A leaf frame is an end frame in itself (like the leaves of a tree) and does not contain any
frame.

Nonetheless, it can be richly configured with the help of variables, something which
does not exist with containers and lists. Indeed, going on Headline models shows a
Variables link, that, upon click, shows only leaf-type frames.

Variables inputed there will then make appear, when a headline containing this frame
is edited, various kind of inputs such as text lines, text fields, images, select menus...
upon which information will be given.

For more details about objects for leaf frames and their
variables, see Chapter 3.

Code 3 shows an example for the contents of a leaf and the related variables.

Code 3 Contents and variables for a simple leaf.

Headline models / Modify / Concert photos :

«Title» («Date»)

«Text»

<TABLE>
<TR>
<TD>
«INCLUDE image.phs;pImage="_Pict1";Html="border=’0’"»

</TD>
<TD>
«INCLUDE image.phs;pImage="_Pict2";Html="border=’0’"»

</TD>
</TR>

</TABLE>

Headline models / Variables / Concert photos :

Title;Title;1;
Date;Date;1;
Text;Text;2;
_Pict1;Picture 1;3;
_Pict2;Picture 2;3;

43

There, the leaf contents use several variables («Date», «Title», ...) to output on the
final page a title, a descriptive text as well as two pictures. These will be inputed during
frame editing using the defined Variables : see 2.4.2 to view how frame editing will look
like.

For the full list and description of leaf frame variables,
please check the Annex (6.1).

2.3.4 Frame style

Frame style options are featured during creation/edit of a headline or frame, plus anytime

when a headline’s contents themselves are edited (2.4), through the icon.

For any frame, they are as follows :

Checkboxes there decide whether :

• frame is displayed ;

• user has the possibility to hide/show this frame (ticking this will make a icon
appear for this frame) ;

• whether frame contents are shown with a border for easier view ;

• frame is a background frame ;

User group rights for handling Background Frames are detailed at 1.3.11.

• frame has extended edition mode (concerning frames that handle ’edit script’ vari-
ables) ;

• display mode is not applied to children of frame (this is the default choice)

44

2.4 Headlines : creation and editing

User group rights for Headlines to be handled are detailed at 1.3.1.

Once headline models have been created, a headline is simply created as featured on
Fig.2.4.

Figure 2.4: Creating a new headline.

After the selection of the headline model it will be based on, a headline is given a
title (under which it will be referred to as when browsing and modifying headlines) and
a name under which it will be published (2.7.1).

2.4.1 Editing a headline : a basic example

Through Headlines / Modify, the list of headlines in the current column is displayed
for each to be edited.

When editing a headline for the first time, Blue Chameleon Content Management
System displays what is featured at Fig.2.5 :

• HTML code as inputed in the headline model contents is interpreted : here, the
display of image "Banner.gif" (cf. Code 1) ;

• frames that have to be displayed are shown yet unfilled ; then, clicking then on

the icon either fills the frame with the assigned frame template or shows the
available frame templates for this frame (2.2.3.1.1).

45

Figure 2.5: First edit ; as both frames use only one template ("Basic text
frame" and "Side Menu List"), so clicking on the icon shows them immedi-
ately.

The buttons and as seen at the top of the page allow respec-
tively to validate any modification on the headline and see how page would be rendered
in real (without the frame menus and icons).

It is to note that these buttons have been created thanks to the inclusion of the
design.phs script (Code 1), hence the importance of always including it for a headline
model.

Outside the headline editing context, the preview of a headline can
also be done through Headlines / Preview. .

Any editing to a frame is then performed through its own icon.

2.4.2 Editing a leaf frame

The output for the example Code 3 (a simple leaf frame template contents and variables)
is featured at Fig.2.6. There, user fills the different variables that had been defined such
as text fields, text zone (as using the Document Editor) and uploaded images (3.1).

46

http://www.bluechameleon.com/en/pdf/Section_AdvEditor.pdf

Figure 2.6: Filling in with information the leaf’s various variables.

When everything is done, page is firstly validated via ; it can then be

’ed (Fig.2.7), and, if modifications done are fine to finally validated,
is hit.

2.4.3 Editing a list frame

Lists frames are slightly more complicated, as they can yield an indefinite number of
frames. In the following example, a list frame template "Side Menu List" has been cre-
ated as in Code 2 and is using (2.2.3.1.1) leaf model "Simple List Element" (see 2.4.3.1

47

Figure 2.7: A preview of the page.

for more details about it).

As featured on Fig.2.8 :

• first, the button of the list frame is clicked, which adds a new sub-frame, yet
undefined ;

• the of this sub-frame is clicked, which already fills it with a "Simple List
Element" leaf (as it is the only frame Side Menu List uses) ;

• the now-appearing Simple List Element frame then offers several icons, amongst

which and : clicking on the latter adds another Simple List Element on
the bottom (the former would have added it on the top) ;

• and so on, until all needed list elements are here.

Each list element features of course the icon, which allow to edit it ; also, the

, allow to place the list element before the previous one (if not on the top of the
list) or after the next one (if not on the bottom of the list).

A list element can be removed through .

As usual, the icon allows to edit list element’s frame style (2.3.4).

2.4.3.1 Example for a leaf frame as used by a list

The leaf model "Simple List Element" as used above has the following contents :

«_Text »

48

Figure 2.8: Populating a list frame.

and the corresponding Variable are defined as :

_Link;Link;4;
_Text;Text;1;

When a list element will be edited, the following output will be shown :

49

2.5 Layouts

2.6 Articles and article models

User group rights for Articles and Article Models to be handled are respectively
detailed at 1.3.2 and 1.3.14.

Articles and article models are in fact a deprecated version of Headlines, and therefore
are currently not used anymore.

2.7 Managing pages
How headlines are managed through time is described next.

2.7.1 Publishing pages

User group rights for publishing pages are detailed at 1.3.8.

As a matter of fact, while most objects in Blue Chameleon Content Management
System can be published at the time of their creation/modification, a page that is edited
is not available right now on the website : it needs to be explicitely published first.

Publishing is done through Headlines / Publish, where a list of headlines in the
current column - including its virtual columns (1.4.4.1) - is shown, with their publish
status, related .htm file in the current folder, and the name under which it is published.
For instance, the following :

would show that headline "Home Page", which is published under Home_Page.htm
using file 20110323143529_16608.htm (see ’Properties of headlines’ (2.7.2) for more de-
tails about publication name and related file) has been edited but not published yet :
simply clicking on Home Page would then publish it, and a (Published) status would
replace (Modify).

As a column could contain a quite sizable number of pages, it is possible to publish
multiple pages with a single click.

50

2.7.1.1 Multiple publish

On the Headlines / Publish page, a link Click here for multiple headline publish
(also available for articles) redirects to a page as featured in Fig.2.9.

Figure 2.9: Publishing several headlines in one single time.

There :

• a framed table with checkboxes (articles, headlines,...) stands as to pick objects
of interest ; menus with options ’Current’, ’+Subfolder’, ’Section’ let then choose
where the publishing task takes place, to where specified by the right right-hand
menus, detailing the current column and its virtual columns ;

• a possibility to check objects, whatever their publication status is ;

51

• ...for the above choices, a button used to refresh the...

• list of headlines, each accompanied with a checkbox deciding if the publishing ap-
plies on it ;

• upon click on the , a confirmation screen then appears, featuring the
number of ticked pages to be published ;

• finally, upon validation, confirmation screen shows the result of the mass-publication.

Headlines that belong to edition-enabled columns (Fig.1.6) have dedicated publishing
functionalities (4.5.2).

2.7.1.2 Scheduled publishing

Scheduled publication allows - in the multiple publish context - to program the automatic
publication a selection of headlines on a specified date and time ; for it to be proposed,
the Publisher settings (1.5) must have a user selected for ’Scheduled Publishing User’.
Then, menus allowing to choose date and time will be provided :

52

2.7.2 Properties of headlines

Figure 2.10: Configuring and viewing data related to headline "Home Page".

This page is useful to check any activity and useful data related to a headline. As
featured on Fig.2.10, information and data configuring is multifarious :

• the headline’s name, which can be modified ;

• when the last publication was done ;

• under which name this page is published.

53

After having created a headline, it is necessary, for linking
purposes, to change this name to something URL-compliant,
e.g. Home_Page.htm.
The page can then be added as a link, or ac-
cessed, via the path displayed on the screen (here,
YourPublisher/opsmain/Home_Page.htm)

• by which physical file of the server (e.g. 20110323143529_16608.htm) it is repre-
sented (name is mainly composed of year, month, day of when it was first created) ;

• whether this page will expire (by default set as in 1.4.3.2) ;

• whether it has an associated form (3.6) ;

• whether it is linked as http or https ;

• the Meta Tags, where the information configured in 2.2.3.2 is finally filled ; as a
result, the Home_Page.htm page will contain the following :

• a direct click-link to check the reports (4.6.2) related to this headline ;

• where it refers to, as well as where it is referenced from, as a tree structure that
can be browsed.

Any modification in the fields and/or drop-down menus must be validated through
the button.

2.7.3 Other management options for pages

A tree-structure view aimed at managing headlines directory-wise is accessible viaHeadlines
/ Manage, as illustrated in Fig.2.11.

Through a right-click on a headline’s name, it is possible to copy a headline in the
same column or to another and also - if headline is in the current column, to rename it.
Previewing and refreshing are also available.

When right-click is done on a folder’s name, the only options are refreshing and
creating a new folder inside it (if clicked folder corresponds to the current column).

54

Figure 2.11: Managing headlines in a file system way.

55

56

Chapter 3

Object management

Now that the use of Blue Chameleon Content Management System’s main functions has
been detailed, it is time to describe which useful objects are integrated into pages.

What follows principally deals with how elements like images, downloads,... are cre-
ated/uploaded, then integrated as variables and in leaf model contents :

• a leaf frame model’s contents, as written via Headline models / Modify /
a leaf frame model is told to INCLUDE objects such as images, links, text areas,
using variables ;

• those are defined via Headline models / Variables / a leaf frame model ac-
cording to the type of object ;

• afterwards, when a leaf frame as based upon this model will be edited through ,
i.e. the values of the variables will be given thanks to menus, browsers...

3.1 Images

User group rights for Images to be handled are detailed at 1.3.4.

Images are that are uploaded through Blue Chameleon Content Management System
are afterwards available whenever a button is available, for instance when
a leaf frame contains an Image variable (cf. Fig.2.6).

3.1.1 Uploading an image

Fig.3.1 shows how to do so ; there, the following is inputed :

• a description (name under which this image will appear) ;

57

• its type (jpg or gif) ;

• optional width and height in pixels (if not filled, the image will be shown in its
native size) ;

• a caption ;

• where on your computer it will be uploaded from ;

• a folder (only folders available under the current column and the Publisher
are available) ;

• whether to automatically publish image or not.

It is to know that if this checkbox is not ticked, it will not be available for pages. If an
image has been uploaded without having been published, it can nonetheless be published
anytime through Image / Publish.

Figure 3.1: Uploading an image.

After uploading, all previously-entered data (except for folder location) can be up-
dated through Image / Modify.

58

3.1.2 Image folders

Provided that group rights for images are sufficient, it is possible, in the Image envi-
ronment, to create a folder under any column ; for an image to be uploaded onto a new
folder not under the current column, the column will have to be changed, though (1.4.3.1).

Folder creation is then done as featured in Fig.3.2.

Figure 3.2: Creating a folder for images.

3.1.3 Managing images

The Manage link in the Image environment provide a tree-view of folders and image
files, allowing to perform various actions such as deleting pictures (which can also be
done through Delete), renaming them (Fig.3.3)...

3.1.4 Integrating images

In a Leaf Frame, images that have been uploaded through this means are then integrated
either from the button (in the context of an Image variable) or by clicking

the (in the context of the Text Editor). A file and folder structure similar as shown

59

Figure 3.3: From here, all images and folders can be globally managed.

above will then be displayed (Fig.3.4).

If an image needs to be integrated in the contents of a Headline, such as a Banner, it
is advised to upload the picture as a file (4.1.1).

To make image available in the context of an Image variable, leaf frame’s contents
will have to call image.phs, like it was done as an example in Code 3.

Table 6.4 in the Annex shows more options for system script
image.phs.

3.2 Links

User group rights for Links to be handled are detailed at 1.3.6.

Link are that are created through Blue Chameleon Content Management System are
afterwards available whenever a button is available, for instance when a leaf
frame contains an Link variable.

60

Figure 3.4: Integrating an uploaded image.

The creation of links is used for ’URL’ links, i.e. that redirect to a http or mailto
address ; otherwise, linking to already-existing object such as an headline or a download
does not require a link to be created.

3.2.1 Creating a URL link

Fig.3.5 shows how a URL link is created :

• for an external page, the full http://... or https://... address must be indi-
cated ;

• for a local page (see 2.7.2 on how, address-wise, pages are published), the full path
from Publisher name (not included) to publication name has to be indicated ;

• for an email address to write to, the mailto:... is included.

There is also the option of making link available in any column of the Publisher.

61

Figure 3.5: Creating a link.

3.2.2 Managing URL links

After having been created, the address and name for a link can be updated through Link
/ Modify.

A link can also be previewed (i.e. available as a click link to test whether it redirects
rightly) or deleted through the eponymous links.

3.2.3 Integrating links

In a Leaf Frame, links that have been created through this means are then integrated
either from the button (in the context of an Link variable) or by clicking

the icon (in the context of the Text Editor). A file and folder structure will then be
displayed (Fig.3.6).

It is to note that the ’link type’ menu as seen in that figure offers various options :
URL, which is how links created as described above are integrated, but also Articles and
Headlines, as well as books (4.3.2) and downloads (3.4) can be linked to. The example
below shows how a link to the headline "Featured Artist of the Month" - without knowing
its specific address - is selected for a link variable :

62

Figure 3.6: Putting a previously-defined URL link.

For link variables, if _LinkVar is the name of the link variable, the leaf frame contents
will have then include the following call to make link available :

63

Headline models / Modify / a leaf frame model :
(...)
«INCLUDE href.phs;_Link="_LinkVar"»
(...)

Links can also be enriched with styles, for instance triggering pop-ups
(3.3.3).

Table 6.4 in the Annex shows many more options for system script
href.phs.

3.3 Scripts

User group rights for managing Scripts are detailed at 1.3.18.

Blue Chameleon Content Management System offers the possibility for OSL-based
code to be executed for certain objects like frames, links... This might be useful when
developing a Front-Office.

3.3.1 Creating a script - Management

As featured in Fig.3.7, creation of a script (apart from name and whether it will be used
in any column of the Publisher) requires a type, amongst those :

• Frame Edit/View : to be included in leaf frames using a ’script’ variable (see below) ;

• Link style : for leaf frames with ’link’ variable, providing a specific style for the link
(see below) ;

• Menu, dedicated to menu elements (3.5).

After, scripts can be tested through Run, modified via the eponymous link (allowing
to either Modify description or Edit script).

64

http://www.bluechameleon.com/en/pdf/Front_Office.pdf

Figure 3.7: Creating a script to be used in a leaf frame.

3.3.2 Integrating a frame script

A leaf frame that handles scripts must have the following contents :

Headline models / Modify / A script frame :

«INCLUDE scriptfile.phs»

This system script handles calls to scripts. As for the ’script’ variable, it uses identifier
’5’ :

Headline models / Variables / A script frame :

Script;Script;5;

As a result, during editing of a headline containing this frame template, a frame script
will be chosen :

65

It is possible to pass parameters to the script thanks to the eponymous field, in the
following way :

_Param1=1;_Param2=yes;...

3.3.3 Integrating a link style script

This type of script is useful when a clicked link must trigger a specific action, such as a
pop-up of defined pre-dimensions.

For that matter, a script ’Picture pop-up’ is created/defined as follows :

Scripts / Create :
...

HREF="#"
onClick="window.open(’«URL»’,’PopUpWindow’,’toolbar=no,location=no,menubar=no,
status=no,scrollbars=no,resizable=no,directories=no,copyhistory=no,
width=1280,height=984’)"

On a frame containing a link (3.2.3), we then make that link to point to a headline
(for instance, a headline containing a full-sized picture), using style ’Picture pop-up’ :

66

Thus, upon click on that link, a pop-up sized 1280x984, showing the headline "Josh
Tulsa 2010 FULL SIZE", will appear.

3.4 Downloads

User group rights for handling Downloads are detailed at 1.3.12.

Downloads are created through Blue Chameleon Content Management System serve
as to provide on published pages a link to download any kind of file. In difference with
uploaded files (4.1.1) that would be linked to with a self-made link, downloads allow,
with variables of the ’download’ type, to provide an easier way to create a download-link.

3.4.1 Creating a download

The process is shown at Fig.3.8 ; apart from the name under which the uploaded file will
appear (’Description:’), an optional field ’Rename filename:’ serves as to automatically
rename the file when it will downloaded on the resulting page.

The type of file (amongst a wide variety of choices as set at the Publisher settings’
file types, 1.5.1) is also chosen, as well as in which folder to put it in.

Figure 3.8: Uploading a file that will be used for downloading purposes.

If the ’automatically publish’ checkbox had not been ticked during creation,Download
provides a Publish link that allows to do it anytime.

67

3.4.2 Managing downloads

After creation, the Download / Modify link allows to change the file it links to. This
is useful when a updated document (for instance in a weekly or monthly way) has to be
uploaded regularly : nothing else has to be done than uploading the file again. It also
offers information on publication path and creation, last modification dates.

The Properties link (apart from the same information as given by the Modify page),
offers to change the type of file (provided sufficient group rights) through a menu as well
as to choose either a http or https coding for the URL :

APreview link also allows to test any created download, and it is possible toManage
them through a file-folder tree structure similar to Fig.3.3. Deletion of a download is also
permitted through the eponymous link.

For secure downloads to function, they must be enabled at
the Publisher Settings Page (1.5).

3.4.3 Integrating downloads

Downloads can be integrated on a leaf frame simply through a ’link’ variable : indeed,
the ’link type’ menu (3.2.3) as provided when integrating a link provides a ’download’
option, allowing to select a download from browsing the usual tree structure.

A download can also be integrated through a ’download’ variable proper, as identified
by 10, for instance as in

_Dwnl;Download;10

Fig.3.9 shows how the download variable is filled.

Leaf frame contents must then include the following call to make download available :

68

Figure 3.9: Integrating a download, with a ’download’ variable.

Headline models / Modify / a leaf frame model :
(...)
«INCLUDE download.phs;_Download="_Dwnl"»(...)

This will generate the , tags around the download description
as given by the user.

3.5 Menus

User group rights for handling Menus and Menu models are detailed at 1.3.27.

A "menu" as defined in Blue Chameleon Content Management System is yet another
object that can be put in a leaf frame ; menus generated this way are fully customizable.

A menu is based upon a menu model which uses itself a menu-type script.

3.5.1 Menu scripts

A script (3.3) for instance called ’Top Menu script’, of type ’menu’, could be defined in
the way shown at Code 4.

In this simple example, menu items simply link to an element and do not contain
children menu items (3.5.4).

Using the system table OPSMENUITEM which stores menu elements (added by user when
filling the menu (3.5.3.1)), this example menu script does the following :

69

Code 4 An example of menu script, outputting menu items :

Scripts / Create :
...

«VAR NEW MenuLinkId»
«VAR NEW MenuLinkType»
«VAR NEW MenuLinkStyle»

<TABLE cellspacing=2 cellpadding=2>
<TR>
«SQLOUTPUT»

«LET MenuLinkId=iLinkId»
«INCLUDE LinkTypeConversion.phs;_Way="int2char";_IntVar="iLinkType";
_CharVar="MenuLinkType"»
«LET MenuLinkStyle=iLinkStyle»

<TD class="«#SQLWWWHOME#»/css/MyClass.css">
«azItemName»

</TD>

«/SQLOUTPUT SELECT * FROM «#SQLWPA#» OPSMENUITEM WHERE iMenuId=«_MenuId» AND
(iStatus=1 OR iStatus=3) AND ORDER BY iIndex»
</TR>

</TABLE>

70

• on the relevant menu (as identified by _MenuId), information is fetched on all menu
items that are not hidden (test on iStatus) ;

• for each of those particular menu items, in a cell formatting (using a custom css),
the corresponding Url is retrieved and put as a link around menu item’s name.

3.5.2 Menu models

With at least a menu script defined, a menu model can be added as featured in Fig.3.10.

There :

• as usual, are given name and whether use in all publisher is allowed ;

• a ’Rights’ vector, which must be as long as there are items in the menu (3.5.3.1) ;
if the n-th element of the vector is ’1’, the n-th item of the menu will be allowed to
have a picture as a link, ’0’ if not ;

• methods for creating, editing and viewing : usually, the same menu script (here,
’Top Menu script’) as described above is taken for the three.

Figure 3.10: Creating a menu model.

3.5.3 Creation of a menu

With a menu model defined, a menu is defined as described in Fig.3.11.

After creation, it is to note that a menu can be updated (i.e. its name changed)
through Menu / Properties.

Now, once created, menu is to be filled.

71

Figure 3.11: Creating a menu "Basic top menu" based upon model ’Top
Menu’.

3.5.3.1 Filling of a menu

For menus to function properly, linked pages or objects
must be published (2.7.1).

This task is achieved throughMenu /Modify, where a table featuring ’Menu name’,
’Url’, and one (and then several) icon(s) are proposed :

Clicking then on the icon leads to a screen where a name for the first menu
element is chosen, as well as a link (which can be of any type (3.2.3) and style (3.3.3)),
or none at all ; in this example, link is chosen as Headline "Festivals Main" :

72

Upon validation on , menu item is finally added, and now a whole range
of icons is available :

For each of menu items, their functions are :

• : hides (by greying it) / displays the menu item ;

• : edits the menu item’s text and link ;

• : views the output of the menu script, applied to that menu item. In the
example of Code 4 the output is identical for all menu items, as they do not have
children ;

• , : adds another (sibling) menu element before or after this menu item ;

• , : for menus with more than one item, places this menu item before the
previous one (if not the first in the menu) or after the next one (if not the last in
the menu) ;

• : appends a child menu item to this menu item (see 3.5.4) ;

• : removes this menu item from the menu.

73

3.5.3.2 Menu result and integration

With a simple menu script as defined as in Code 4, the output of the "Basic top menu"
menu gives :

Each of the menu elements as rendered here is clickable, redirecting to its assigned Url.

Now, for the frame that will accept a menu, its contents must be written in the
following way :

Headline models / Modify / Menu frame :

«INCLUDE showmenu.phs;_Menu=_Menu»

This system script handles menus, with the variable _Menu set as follows,

Headline models / Variables / A script frame :

_Menu;Menu;12;

As a result, when editing this frame, a will allow to choose a menu,
here "Basic top menu" :

After selection of the menu, button redirects to a page where

menu items are managed, similarly as in 3.5.3.1. The button allows to remove
the selected menu.

74

3.5.4 More complex menus

The above dealt with a simple menu, where each item corresponds to one link. Now,
Blue Chameleon Content Management System allows more advanced menus to be imple-
mented, where a menu item yields other menu items.

3.5.4.1 A menu script that handles children menu items

To do so, Code 4 must be altered and enriched : an example of what could be done is
given at Code 5.

Basically, there are now two SQLOUTPUTs, one for constructing the menu horizontally
like before, and the other, embedded, to construct children menus vertically if they exist :

• the first selection comes now with a iParentItemId=0 clause, so that only "root"
menu items are selected ;

• inside the loop, for a menu item, a test is made on how many children it has ; if it
has not any, menu item is displayed as before ;

• ...if it has children, menu item comes with javascript functions aimed at show-
ing/hiding a DIV, where the children of this menu item are constructed (now ver-
tically) with a similar mechanism, but using menu item’s identifier iItemId for
iParentItemId’s value ;

• this inner loop is exited, and next horizontal menu item is processed.

3.5.4.2 A menu with children menu items

Such a menu (called in the following example "Menu (extended)") is constructed by using

the available for each menu item (3.5.3.1) ; child menu item is then created as usual
with a name and link. In this example, we aim to create, for menu item "Our Magazine",
a child menu item :

75

Code 5 A menu script which handles menu items that could have children :

Scripts / Create :
...

«VAR NEW MenuLinkId»
«VAR NEW MenuLinkType»
«VAR NEW MenuLinkStyle»

<TABLE cellspacing=2 cellpadding=2>
<TR>
«SQLOUTPUT»

«LET MenuLinkId=iLinkId»
«INCLUDE LinkTypeConversion.phs;_Way="int2char";_IntVar="iLinkType";
_CharVar="MenuLinkType"»
«LET MenuLinkStyle=iLinkStyle»

«SQLEXEC INT _nbChildren=SELECT COUNT(*) FROM «#SQLWPA#»OPSMENUITEM WHERE
iMenuId=«_MenuID» AND iParentItemId=«iItemId»

«IF _nbChildren==0»
<TD class="«#SQLWWWHOME#»/css/MyClass.css">
«azItemName»

</TD>
«ELSE»
<TD onMouseOver=... onMouseOut=... class="«#SQLWWWHOME#»/css/MyClass.css">
«azItemName»
<DIV id=...> «*Output child menu vertically*»
<TABLE>
«SQLOUTPUT»
«LET MenuLinkId=iLinkId»
«INCLUDE LinkTypeConversion.phs;_Way="int2char";_IntVar="iLinkType";
_CharVar="MenuLinkType"»
«LET MenuLinkStyle=iLinkStyle»
<TR><TD>
«azItemName»</TD></TR>

«/SQLOUTPUT SELECT * FROM «#SQLWPA#»OPSMENUITEM WHERE iMenuId=«_MenuId»
AND (iStatus=1 OR iStatus=3) AND iParentItemId=«iItemId»
ORDER BY iIndex»

</TABLE>
</DIV>

</TD>
«ENDIF»

«/SQLOUTPUT SELECT * FROM «#SQLWPA#»OPSMENUITEM WHERE iMenuId=«_MenuId» AND
(iStatus=1 OR iStatus=3) AND iParentItemId=0 AND ORDER BY iIndex»
</TR>

<TABLE>

76

A new view Menu (extended) / Our magazine is then provided, showing we are
now inside menu item "Our magazine". There, menu items can be managed in a similar
way as for the root menu. We can add thus several menu items for this sub-menu :

This sub-menu is exited by clicking on the root :

The sub-menu in question can be managed anytime through the Our magazine link.

It is to note that, in order to delete a menu item that has children, those have to be
deleted first.

77

3.6 Forms

User group rights for handling Forms and Form models are detailed at 1.3.29.

3.6.1 Form models

As featured in Fig.3.12, the creation of a form model, apart from a name, entails the
following :

• the script type it will use, either Blue Chameleon (OSL) or PERL ;

• which action it will perform (apart from none, either ’Send E-mail’ or ’Record to
file’ ;

• how labels will be aligned :

– normal (no alignment) ;

– two lines (field, menu or radiobutton is below the label) ;

– labels aligned left (or right), including colons ;

– labels aligned left (or right), without colons ;

– labels aligned left, including colons aligned right.

• how buttons will be aligned, left, center or right.

3.6.1.1 Form model management - parameters

Once created, a form model can be modified, offering the same options as described
above, plus now the defining of parameters, as Fig.3.13 shows. A parameter name and
value must be given and it can also be flagged as read-only.

As many parameters as needed can be created, and each has its set of , icon
allowing to respectively edit or delete it.

3.6.2 Defining forms

Once form models as described above exist, forms themselves can be created as featured
at Fig.3.6.2.

78

Figure 3.12: Creating a form model.

Figure 3.13: Adding parameters to a form model.

3.6.2.1 Updating a form

A form inherits the properties of its referent model (script type, alignment, parameters...)
; nonetheless, they can updated along form’s name as follows :

79

Figure 3.14: Creating a form based on the example model.

3.6.3 Composing a form

In Blue Chameleon, composing a form is done using a similar interface as the one seen
for headlines.

80

Going for modifying a form displays the following :

A list of "design pages" for this form is featured there, each of them accompanied

with icons aimed at editing this page () and adding a new page before, after (,

).

A "Thank you" item (which is not a form page) serves as to provide, if wanted, a
confirmation message (3.6.3.4) after the submission of the form.

If form contains several pages (3.6.3.6), a icon is available to remove a page.

3.6.3.1 Editing a form page

Upon click of the , for a form that has only page, the following is shown :

81

This headline-editing-style environment features, along with the usual and

buttons, the name of the current form as well as the current page, in a

greyed-out style, . If form contains several pages (3.6.3.6), as many buttons as
pages would be available, each clickable to switch pages.

Whichever the number of pages is, a button is always there to switch to
the composing of the post-submission message (3.6.3.4).

It can be seen that, at first, four elements are featured by default :

• two fields, which can be altered or removed ;

• two buttons, and , which can only be altered ; they function as
non-removable buttons that respectively cancel the form and submit it.

For a given form page element, icons allow to perform actions ; according to the
function of the element, and/or its placing, they might not be available :

• : allows to edit this element (3.6.3.3) ;

• : allows to edit the type : checkbox, button, text input... of this element

(3.6.3.2) [not available for the default and buttons] ;

• , : allow to add a new form page element before, after this element ;

• , : allow to place the element before the previous one (if not on the top)
or after the next one (if not on the bottom) ;

• : allows to remove this element (not available for the two default buttons).

3.6.3.2 Form page element types

A large choice of types of form elements is proposed when clicking on the icon for
an element :

82

Types include the following :

• radiobutton ;

• checkbox ;

• input text ;

• text area ;

• a hidden field ;

• an image ;

• a label ;

• a separator.

Also, it is possible to flag the element as ’Required’ for the submission of the form
and alter the element’s name.

It is to note that buttons are not featured, as they perform actions such redirecting
to a page, submitting a form... that are reserved for the default buttons already provided
by Blue Chameleon Content Management System.

83

3.6.3.3 Editing a form page element

The illustration below shows how, for instance, an input field can be edited :

Here, label and value can be edited, as well as the given visibility, chosen amongst
’hidden’, ’visible’ and editable. As for the ’Name’, it can be edited while modifying the
type of the element (see next).

The full description of how form elements can be edited is available
in Annex (6.4).

3.6.3.4 After form is submitted

The "Thank you" item as seen on the Form Modify Page, or the button as
seen on the top when editing a form, permit to create a small message displayed after
form has been submitted.

3.6.3.5 A form result

As several inputs are added, form is saved by the button. Here is an example
of the preview of a form :

84

3.6.3.6 A form with several pages

The previous described the example of a form that contained only one page, therefore
with a set of cancel and submit buttons already featured at the bottom of the page.

Now, need may rise of a form - with usually a large quantity of information - that

features several steps (for instance, each terminated by some button) until final
submission is done. Blue Chameleon Content Management System allows to do this, by

adding as many steps ("pages") as needed, thanks to the , as seen on the Modify
Form Page (3.6.3).

For instance, if a second page is created, the edit for Page 1 will now look like this :

85

It can be seen that a button is now available to edit the second page and that

the button has disappeared, replaced by a aimed at displaying the next
page on the resulting form. This button can be edited. Pages after the first page also

include an editable aimed at displaying the previous page.

Finally, on the last page, the button will be available :

3.6.4 Integrating a form

If a headline is to use forms, it must contain the following call :

Headline models / Modify / Subscribe Model :

(...)
«INCLUDE form.phs»
(...)

86

3.7 Variable files

As previously seen in this Chapter, to summarize :

• a frame model integrates one or more variables ;

• afterwards, when a headline is created, the corresponding frame based upon the
aforementioned is filled, variable-wise.

This assessing of variable values (as inputed formatted text, image file, link...) creates
or updates a file in the system called a variable file (varfile). This .var file is situated in
the folder corresponding to the current column and contains, the NAMEs and VALUEs of all
variables used for the frame.

Therefore, there is one and only one variable file for a leaf frame.

3.7.1 Example of varfile contents

Varfiles are binary files that cannot be opened directly through Site management /
Edit file ; nonetheless, their output can be seen when an export of the current column
or the Publisher (4.1.5.1) is done and the resulting export file is viewed.

For instance, the leaf frame as seen at Fig.2.6, related to headline "Josh Jones Tulsa
2010" saved in column opsmain, can be shown to have the following (formatted) varfile
contents :

87

In this example export file, the variables in the varfile 20110323160033_17848.var
and their values can be well seen (see 4.1.5.2 for more details about export file contents).

3.7.2 Varfiles as variables

Varfiles can be as a matter of fact loaded as variables for a leaf frame ; to do so, the
related frame model integrates the following :

Headline models / Variables / A script frame :

_Varf;Varfile;6;

As a result, when a headline containing this frame model is edited, choice is offered
to select a varfile :

88

Upon click of the button, a list of headlines is then proposed, and,
after one specific headline is clicked, its frames are listed as click-links. Finally selecting
a frame this way then stores the related varfile :

89

90

Chapter 4

Other elements

This Chapter introduces components that, while quite secondary to Blue Chameleon
Content Management System use, are nevertheless useful.

4.1 Site management

User group rights for Site Management are detailed at 1.3.13.

The previous ways of uploading data - images (3.1), links (3.2) and downloads (3.4)
- showed a dedicated interface with the uploaded data being integrated on a leaf frame,
through a variable.

Now, it is time to focus on files that can easily be used when composing a page’s
content, such as a Banner image (as in Code 1), a css style... in other words, files to be
used in contents as accessed by Headlines / Modify. They need to be easily linked
to, with HTML code.

The paths to upload files, in the ways previously described, were consisting in columns,
mainly opsmain. The uploading of files through Site management happens at the root
described by the system variable «#SQLWWWHOME#». From here, folders can also be created
(4.1.2).

4.1.1 Uploading files

Fig.4.1 shows how the image Banner.gif is uploaded onto the already-existing img/
folder. There are given :

• the directory under which it will be uploaded e.g. img/, css/,... (this directory
must already exist, otherwise it has to be created - see below) ;

• the full name under which it will be used (which can be different from the original
file name) ;

91

Figure 4.1: Uploading a file to be used in headline contents.

When uploaded, files can then be used as in the following headline (or frame) sample,
never forgetting the «#SQLWWWHOME#» root :

Headline models / Modify / Some headline :

<HTML>
<HEAD>
<LINK HREF="«#SQLWWWHOME#»/css/MyStyle.css" REL="stylesheet" TYPE="text/css"
MEDIA="screen">
</HEAD>
<BODY>

«INCLUDE design.phs»

(...) <SCRIPT type="text/javascript"
src="«#SQLWWWHOME#»/js/Calculation.js"></SCRIPT>
(...)

4.1.2 Creating directories

Directories can be created to sort better pictures, styles,... to be included in headline and
frame templates’ contents. Fig.4.2 shows how a new directory is created.

Blue Chameleon Content Management System already has the directories img/, js/
and css/. To create a sub-directory under an already-existing directory, the full path
must be given :

92

Figure 4.2: Creating a new directory, directly under the «#SQLWWWHOME#»
root.

4.1.3 Managing files and directories

Text-based files such as scripts, css,... can be edited and saved as featured in Fig.4.3.

It is also possible to rename files with the eponymous link : file will be identified as
in Fig.4.3 and a new name will be inputed for it.

Deletions of files and directories are processed with the relevant links, with the same
identification needed (location and name of file or directory).

4.1.4 Executing SQL

Executing SQL queries, an example of which is shown at Fig.4.4, is mainly important for
Packages (5), where you have created your own tables (5.1.1). According to the nature
of the query (SELECT or an other), a different button is clicked.

An example of table creation :

93

Figure 4.3: Editing a text-based file.

94

Figure 4.4: Outputting the contents of a table.

4.1.5 Export and Import

The Publisher in general and its constituting columns in particular can be summed up
in a formatted file that describe their contents with the help of opening and closing tags,
holding with them data.

The aim of those files (which are .txt files) is to easily export the data contained in
a column in a form that can be imported by another publisher, or even from a column
of the publisher to another column.

4.1.5.1 Generating export files - importing them

Fig.4.5 shows how an export.txt file is generated.

There, for export purposes, two eponymous buttons serve as to either export the cur-
rent column or the whole publisher. The file can then be seen through Blue Chameleon
Content Management system via the Edit file link (4.1.3), leaving the ’File location:’
blank as it is situated in the Publisher directory.

Similarly, an import of a well-formatted file can be done through the dedicated button,
provided that file had been uploaded (4.1.1) under the Publisher root, i.e. with leaving

95

Figure 4.5: Exporting the current column.

again the ’File location:’ blank.

4.1.5.2 Export file contents

Fig.4.6 shows an excerpt of the contents of an export.txt file.

There, it can be seen that it is organized along those rules :

• <HEADLINE>...</HEADLINE> tags embed the whole contents of a headline, of which
basic information (its identifier, its related COLUMN, its NAME) is first given ;

• contents then consist in the file information this headline is based on (2.7.2), between
<FILE>...</FILE>: name of the .htm file (DEFFILE) as well as the publication name
(FIXEDFILE) ;

• then, more information on the headline itself :

– the published status (PUBLISHED_FLAG) ;

– if it belongs to an EDITION (4.5) ;

– its STYLE ;

– the identifier of the headline MODEL is it based on ;

– the date of last publication (PUBLISHED_DATE) given as a Unix c-day ;

– whether it has been given an EXPIRY date (2.7.2).

• <FRAMESET>...</FRAMESET> tags then embrace the headline’s contents, i.e. the
frame(s) the headline is made of, each between <FRAME>...</FRAME> tags ;

• within those, general information upon the frame is given :

– its INDEX, i.e. the value of the _FrameIndex variable it is called by (2.2.3.1) ;

– what its style (2.3.4) is, i.e. whether it is SHOWN, has a BORDER and has extended
edition (EXTEDITION) ;

– the identifier of the frame MODEL.

96

Figure 4.6: An example of export file contents.

• then, in between <VARFILE>...</VARFILE> tags, the various variables for this frame
are to be given, after the NAME of the related varfile is given. Variables are given as
NAME and VALUE couples, in between <VAR>...</VAR> tags (see 3.7.1 for a detailed
example of a varfile) ;

• as a frame contains only one varfile, the closing </VARFILE> tag is followed by the
</FRAME> tag ;

• as a headline may contain several frames, the last of the closing </FRAME> tag(s) is
followed by the closing </FRAMESET> tag, which is followed by the closing </HEADLINE>
tag ;

• there are as many <HEADLINE>...</HEADLINE> tags as there are headlines in the

97

current column or Publisher.

4.2 Model defaults

A model default can be defined for Form models (3.6.1) and headline models (2.2).

At Fig.4.7, the creation of a model default aimed at headline model "Bk background"
is illustrated.

Figure 4.7: Creating a model default for a headline model.

4.2.1 Model defaults and headlines

This model default can be afterwards associated with a headline, picked amongst a list
of headlines based upon the headline model that was used.

Here, for model default "Bk model default bkgnd", using headline model "Bk back-
ground", we use a headline ("bk mod def headline") that was defined using that headline
model. This setting can be done right after model default creation, or modification :

98

4.3 Books

4.3.1 Book models

User group rights for managing Book Models are detailed at 1.3.23.

To be successfully created, book models necessitate the fol-
lowing to be defined :

• ’book’ headline models (2.2.1) ;

• and fully-configured model defaults (4.2) for those headline
models.

Creating a new book model is featured at Fig.4.8.

There, apart from the name, picture of the book model and whether it is to be used
in any column, book-type headline models are selected for the background and foreground.

After creation, a book model can be updated (name, picture, background/foreground
models) or removed viaModel Defaults /Modify Book Model,Delete Book Model.

4.3.2 Creating books

User group rights for managing Books are detailed at 1.3.22.

99

Figure 4.8: Creating a book model.

Once at least a book model has been created as described above, books can be cre-
ated ; an example is featured at Fig.4.9.

Figure 4.9: Creating a book.

This action also creates, in the current column two new headlines "Book - Main Book
- Background" and "Book - Main Book - Foreground".

100

In this example, background and foreground headline models have been defined as
follows :

Headline models / Modify / Bk background :

<style type="text/css">
body {background-color:#AEABA0;}
</style>
<i>[This is Headline Model "Bk background"]</i>

Headline models / Modify / Bk foreground :

[Contents for Headline Model "Bk foreground"...]

[blah blah blah]

The results of those simple book background and foreground models can be seen on
the Headlines page :

4.3.3 Modifying a book

Just after it is created, a book only contains a background and foreground, as associated
to its model.

Via Modify, it becomes then possible to perform actions with sets of various icons
(Fig.4.10). On this page, elements (including background and foreground) are called
"menus".

• : displays a preview of the element, just as the previews for Background and
Foreground as displayed above. For "Background", it is the only icon available ;

• , : allow to add a menu or submenu element before the previous element
or after the next ;

101

Figure 4.10: From here, book elements can be managed.

• : allows to add a submenu under the menu (not available for submenus) ;

• , : with more than one menu (Background and Foreground excepted - icons
not available for those) or submenu, allows to displace element before the previous
one (if not the first in the list) or after the next one (if not the last in the list) ;

• : removes any element that is not Background or Foreground.

4.4 Notice boards

User group rights for handling Notice Boards are detailed at 1.3.16.

Notice boards gather a collection of modifications that have been brought a site ; a
notice board is associated with a column (1.4) and can be published on a headline as a
list of links to every object that has been updated.

4.4.1 Creating and managing notice boards

An example creation of a notice board is featured at Fig.4.11 ; the maximum number of
days modifications remain in the notice board is given. Then, it is assessed, amongst a
list of headlines in all columns, a specific headline or none at all.

After their creation, notice boards can be modified or deleted thanks to the eponymous
links.

4.4.2 Association with a column

For a notice board to be used in the context of a column, the latter must be updated to
specify it, in the following way :

102

Figure 4.11: Creating a general notice board.

Menus there also allow to define individually, for articles, headlines, downloads and
images, whether entries are done manually or automatically.

4.4.3 Notice board entries

If the notice board usage menus as seen in the previous images have been set ’auto-
matic’, this nonetheless does not prevent user from adding entries manually, as featured
in Fig.4.12.

There, a table with all the latest modifications on the associated column’s headline(s)
is shown ; these are click-links, that, when clicked, add the modification to the notice

103

board, rendering it in normal font.

Figure 4.12: Manually adding two entries to this notice board.

Entries can be removed from the notice board via Delete entry.

4.5 Editions

User group rights for Edition handling are detailed at 1.3.10.

When creating a column (Fig.1.6), the Administrator can
indicate whether the new column will be working in edition
mode. To activate this mode for an already-existing column,
s/he has to create a default edition for the column in the Blue
Chameleon database.

The Edition mode is dedicated to publishers who wish to update their website and a
periodical basis (e.g. a magazine that publishes every month an extract of their articles
from the current paper edition).

In this mode, Blue Chameleon CMS supports different versions of a set of pages in
the same column. These sets are stored in Editions (e.g. the index page leading to the
article extracts will exist in editions January, February, etc.). When opening up a new

104

edition, all the headlines of the current column are copied to the new column.

Only documents from the active edition can be published. In order to replace the
current website with the new edition, the new edition must be marked as ’active edition’
and then be published.

For instance, let us suppose a column has been created with "work with editions"
ticked with "April" as the name of the first edition ; with this column being set as the
current one, the following can be seen :

This current edition name, as well as any other, can afterwards be updated through
Edition / Modify.

4.5.1 General edition management

The process of creating a new edition is simple :

Once more than one edition exist in the system, any edition can be set to ’current’
viz. ’active’ via Edition / Change viz. Set active.

The Delete link also allows to remove any edition that is not current or active.

On the Headline Modify Page, the following display will be shown :

While the current edition is displayed in bold, with its headlines further down, any
other edition (e.g. May) can be clicked to alter its contents.

105

4.5.2 Publishing editions

Through the Edition / Publish path, the following is available :

There :

• clicking on the button will display a simple list of all objects that
have been modified, with the only choice to validate their publication ;

• clicking on the button, on the other hand, will provide check-
boxes to select headlines, articles,... and to check objects, exactly as in Fig.2.9.

The following shows for instance (as current and active editions are set to "April")
the former process :

4.6 Options

This part of Blue Chameleon Content Management System, as accessed via Options is
aimed at giving various information.

4.6.1 Version

This link allows to check the current versions of Blue Chameleon Content Management
System and OSL, user’s IP address as well as the versions (5.2.2) of all packages in use :

106

4.6.2 System Logs

How actions are recorded and how long records are kept are defined
at the Publisher settings (1.5).

Blue Chameleon Content Management System logs in the activity of its users. The
system log contains information on the following actions :

• the modification, creation, deletion and publication of articles headlines, images
and downloads ;

• the setting of ready-for-publication flag and the launching of scheduled publica-
tions ;

• the FTP deletion and FTP publication of articles, headlines, images and downloads ;

• the cancellation of FTP deletion and FTP publication ;

• the creation, modification, and deletion of users and user groups ;

• the users that have logged to Blue Chameleon.

As featured in Fig.4.13, this page provides several menus to narrow searches :

• user(s) of whom activity will be displayed : one’s own log only, one’s current group,
logs of all groups and everything.

User group rights for displaying System Logs user-wise are detailed at 1.3.17.

• on which column the activity took place (or all columns) ;

107

• when this activity took place (the current day, or for the 2, 7 or 30 days) ;

• the kind of activity, related to content management or system (i.e. the managing
of users, groups...) - or any.

Figure 4.13: Checking one’s own activity for last week.

4.6.3 Expiration report

The eponymous link leads to a page where objects that have expired or are going to are
listed ; by default, what decides if objects related to a column will expire is the setting as
done when updating this column (1.4.3.2), which can then be fine-tuned for any headline
on its Properties page (2.7.2).

4.7 Searching for content

User group rights for performing searches are detailed at 1.3.5.

Blue Chameleon Content Management System also offer a search tool that allows, as
pictured in Fig.4.14, to perform searches in four different ways :

• by the name contents are published under ;

108

• by the publication folder (search then returns results by categories - headlines,
images, etc.) ;

• by the object description ;

• by cumulating criteria object type, column and to/from dates (for which choice is
creation, update and publish).

Figure 4.14: Performing a search on objects which publishing name begin
by ’Josh’.

109

4.8 Management of objects
This page, as featured in Fig.4.15, offers the same tree-view structure and management
functionalities than were already seen for images (3.1.3), downloads (3.4.2), headlines
(2.7.3),... but for any object, as selected in the menu on the top.

Figure 4.15: From here, any object can be managed.

110

Chapter 5

Packages

Through use of Blue Chameleon Content Management System, the need for extended
functions might arise sooner or later, requiring data to be uploaded, processed and man-
aged. This implies the enabling of database capabilities as well as more complex script
features.

A package is composed of several .phs scripts, which make extended use of Blue
Chameleon’s own language, OSL ; if you are unfamiliar with it, please check OSL’s User
Guide.

Amongst the scripts that constitute a package, most of them aim at managing the
package itself and its objects inside the system. They have to be integrated for the
package to properly function.

User group rights for managing Packages are detailed at 1.3.28.

5.1 Mandatory scripts
What follows describes the scripts that must be included into your package for it to
function properly. A package is, as an end result, a library compiled from those scripts,
as similarly described in Developing Your Blue Chameleon Add-On.

This library will then be uploaded in your system and its features will be available
for page composing.

5.1.1 PackageInstall.phs

This script contains the necessary instructions to register and update the package inside
the system, according to a version variable. It contains the SQL table creation instructions
to execute the first time and, afterwards, table updates.

An example is given at Code 6. There :

111

http://www.bluechameleon.com/en/pdf/OSL.pdf
http://www.bluechameleon.com/en/pdf/OSL.pdf
http://www.bluechameleon.com/en/pdf/Addon_Development.pdf

• the _PkgeId variable as given at the beginning identifies your package and must be
unique for each package ;

• things are done according to variable piPackageVersion (which value is known
whenever this script is called) and, according to their success (as given by vari-
able _Ok, which can be set through evaluations of «#SQLSTATUS#»es), the value
of piPackageVersion is incremented. See "Updating a package" (5.2.2) for more
details.

5.1.2 PackageGroupModify.phs, PackageGroupModify1.phs

These scripts aim at respectively configuring the group access rights (1.3) for the package
and modifying them. They are featured at Code 7 and 8.

In the first, a FORM is generated : one of the CGI variables, _Script, is set to
YourPackageName:PackageGroupModify1.phs and a group right is selected through a
menu (which options can be expanded if needed). In the second, the update is propa-
gated to the OPS table that manages user groups.

5.1.2.1 Result : package group rights

By accessing the group user rights for a package, what is shown in Fig.5.1 will be then
available : a list of uploaded packages with for each a possibility to Modify rights, in
the layout as defined by script PackageGroupModify.phs.

Figure 5.1: Modifying this package’s rights for a particular user group.

112

Code 6 A template for PackageInstall.phs.

« * Parameters:
* piPackageVersion, currently installed version of the package
* iPackagePublisherId, Id of publisher for which package is to be installed
*»

«LET _PkgeId=150»
«VAR NEW _CptError=0»
«VAR NEW _Ok=1»

«IF «piPackageVersion»<1» «* Create tables+indexes *»
«SQLSTATUS TRANSACTION BEGIN»

«SQL CREATE TABLE OPS_FESTIVALS(
idFestival int, azName varchar(128),
azCity varchar(64), iDate int, idArtist int,

iOrder int)»

«SQL CREATE TABLE OPS_ARTISTS(
idArtist int, azName varchar(128), idMusicalStyle int, azCountry

varchar(64))»

(Create some other tables...)

«SQLSTATUS TRANSACTION END»
«ENDIF»

«DIRECTORY CREATE images/artists»
(Create some other directories...)

«IF «piPackageVersion»<2»
«* Upgrade package to version 1*»

«ENDIF»

«IF _Ok==1»
«LET _PackageVersion=1»

«ENDIF»

113

Code 7 A template for PackageGroupModify.phs.

«SQLEXEC STRING _GName=select azGroupName from «#SQLWPA#»OPSP_GROUPS where
iGroupId=«iPackageGroupId»»

«_GName»: Group Access rights for package
«azPackageName»:

<FORM METHOD="post" ACTION="/Scripts/sql.exe">
<INPUT TYPE="hidden" NAME="SqlDB" VALUE="«SqlDB»">
<INPUT TYPE="hidden" NAME="Sql" VALUE="opsPackage.phs">
<INPUT TYPE="hidden" NAME="_Script" VALUE="Festivals:PackageGroupModify1.phs">
<INPUT TYPE="hidden" NAME="xid" VALUE="«xid»">
<INPUT TYPE="hidden" NAME="iPackageGroupId" VALUE="«iPackageGroupId»">
<INPUT TYPE="hidden" NAME="iPackageId" VALUE="«iPackageId»">
<INPUT TYPE="hidden" NAME="_OPSMenu" VALUE="«_OPSMenu»">

«VAR NEW _GroupRights»
«SQLEXEC STRING _GroupRights=SELECT azGroupRights FROM «#SQLWPA#»OPSP_GROUPS

WHERE iPublisherId=«iPackagePublisherId» AND iGroupId=«iPackageGroupId» AND
iPackageId=«iPackageId»»

<TABLE>
<TR>
<TD>Festivals :</TD>
<TD>
<SELECT NAME="pos0">
<OPTION VALUE="48"«IF _GroupRights[0]==48»SELECTED«ENDIF»>No rights</OPTION>
<OPTION VALUE="49"«IF _GroupRights[0]==49»SELECTED«ENDIF»>View rights</OPTION>
<OPTION VALUE="50"«IF _GroupRights[0]==50»SELECTED«ENDIF»>Modify rights</OPTION>
<OPTION VALUE="51"«IF _GroupRights[0]>=51»SELECTED«ENDIF»>Validate

rights</OPTION>
</SELECT>

</TD>
</TR>

</TABLE>

<INPUT TYPE="submit" VALUE="Modify">
</FORM>

114

Code 8 The script PackageGroupModify1.phs.

«VAR NEW _GroupRights="00000000000000000000"»

«SQLEXEC STRING _GroupRights=SELECT azGroupRights FROM «#SQLWPA#»OPSP_GROUPS
WHERE iPublisherId=«iPackagePublisherId» AND iGroupId=«iPackageGroupId»»
«SQLEXEC STRING _GName=SELECT azGroupName FROM «#SQLWPA#»OPSP_GROUPS WHERE
iGroupId=«iPackageGroupId»»
«LET _GroupRights[0]=@int(pos0)»

«SQL UPDATE «#SQLWPA#»OPSP_GROUPS SET azGroupRights=’«_GroupRights»’ WHERE
iPackageId=«iPackageId» AND iPublisherId=«iPackagePublisherId» AND
iGroupId=«iPackageGroupId»»
«IF #SQLSTATUS#<>1»

ERROR: Command ’UPDATE «#SQLWPA#»OPSP_GROUPS SET
azGroupRights=’«_GroupRights»’ WHERE iPackageId=«iPackageId» AND
iPublisherId=«iPackagePublisherId» AND iGroupId=«iPackageGroupId»’ failed.

«ELSE»

«_GName» Group rights for package «azPackageName»
have been successfully updated.

«ENDIF»

5.1.3 PackageMain.phs

When, from the main page, the package name is clicked, a content as generated by the
PackageMain.phs script is featured. It is used to manage the main data as used in the
package. Therefore, it is mostly free-form apart from the loading of group rights which
can be used to allow certain actions, such as adding a new element, deleting another...

Codes 9 and 10 feature an example of what can be done. There :

• the content of one the main tables (as defined in the PackageInstall.phs script,
5.1.1) is shown on the screen ;

• for each line, a icon "launches" an EditFestival.phs script aimed at for
instance modifying the data related to that festival ;

• a icon "launches" yet another script (AddAnArtist.phs) aimed at for instance
adding a new artist to the festival ;

• at last, at the bottom of the page, a icon could be added, doing the same for
a script aimed at adding a new element to the table.

It is to note that, while the bulk content of that package’s main page is totally free,
there are several things to comply to :

• INPUTs of the form as featured in Code 9 in black must be present ;

115

• a form always redirects to OPS’s opsPackage.phs script. The script that has to be
executed is stored in the CGI variable _Script, always in the
YourPackageName:ScriptToExecute.phs fashion.

5.1.3.1 Result : package main page

By accessing a package from the main page, the output of script PackageMain.phs is
shown. The current example is featured at Fig.5.2.

Figure 5.2: The main page for package Festivals.

116

Code 9 An example for PackageMain.phs (I).

«IF azPackageRights[0] < 49»You haven’t got the right to use this
package«ELSE»

Festival List<P>

<FORM NAME="category" ACTION="/Scripts/sql.exe" METHOD="post">
<INPUT TYPE="hidden" NAME="SqlDB" VALUE="«SqlDB»">
<INPUT TYPE="hidden" NAME="xid" VALUE="«xid»">
<INPUT TYPE="hidden" NAME="Sql" VALUE="opsPackage.phs">
<INPUT TYPE="hidden" NAME="_Script" VALUE="">
<INPUT TYPE="hidden" NAME="_Context" VALUE="«_Context»">
<INPUT TYPE="hidden" NAME="iPackageId" VALUE="«iPackageId»">
<INPUT TYPE="hidden" NAME="_Back" VALUE="">
<INPUT TYPE="hidden" NAME="iPContext" VALUE="1">

<INPUT TYPE="hidden" NAME="_FestivalId" VALUE="0">

<TABLE CELLPADDING="2" CELLSPACING="0" BORDER="1">
<TR>
<TH BGCOLOR="#CCCCCC" nowrap>Name</TH>
<TH BGCOLOR="#CCCCCC" nowrap>Date</TH>
<TH BGCOLOR="#CCCCCC" nowrap>City</TH>
<TH BGCOLOR="#CCCCCC" nowrap>Artists</TH>
<TH BGCOLOR="#CCCCCC" nowrap> </TH>

</TR>
«SQLOUTPUT»
<TR>
<TD>«azName»</TD>
<TD>«=@daytimeday(iDate)»/«=@daytimemonth(iMonth)»/«=@daytimeyear(iDate)»</TD>
<TD>«azCity»</TD>
«SQLEXEC INT nbArtists = SELECT COUNT(*) FROM OPS_FESTIVALS WHERE
idFestival=«idFestival»»
<TD align="center">«nbArtists»</TD>
<TD>
«IF azPackageRights[0]>49»
<IMG SRC="«#SQLWWWHOME#»/img/data.gif"
STYLE="cursor:pointer" onClick="onEditFestival(«idFestival»)"/>
 <IMG SRC="«#SQLWWWHOME#»/img/data_ext.gif" STYLE="cursor:pointer"
onClick="onAddArtist(«idFestival»)"/>

«ENDIF»
</TD>

</TR>
«/SQLOUTPUT SELECT DISTINCT(azName), idFestival, iDate, azCity FROM

OPS_FESTIVALS ORDER BY iDate»
</TABLE>

(...)

</FORM>

«ENDIF»

117

Code 10 An example for PackageMain.phs (II : javascript part).

<SCRIPT LANGUAGE="javascript">

function onEditFestival(i)
{
document.category._FestivalId.value=i;
document.category._Script.value="Festivals:EditFestival.phs";
document.category.submit();

}

function onAddArtist(i)
{
document.category._FestivalId.value=i;
document.category._Script.value="Festivals:AddAnArtist.phs";
document.category.submit();

}

(...)

</SCRIPT>

5.1.4 PackageUninstall.phs

This script is launched when an uninstall of a package (5.2.3) is done. It can be used, as
featured in Code 11, to erase all table data used by the package.

Code 11 An example for PackageUninstall.phs.

«SQL DROP TABLE OSL_FESTIVALS»
...
(Drop all package’s tables)

«DIRECTORY DELETE images/artists»
...
(Delete all created folders)

118

5.2 Package general management

5.2.1 Installing a package

Once at least all mandatory files as described in 5.1 have been written and compiled
with the sqllib compiler and the compiled library has been uploaded to the Publisher’s
SysLibHome, the package is ready to be installed, as featured on Fig.5.3.

Figure 5.3: The first install of the package "Festivals".

5.2.2 Updating a package

Through time, a package’s contents may be updated : new scripts can be added, others
modified, some SQL updates have to be performed... In any case, the library will have to
be compiled and uploaded again.

If the case of SQL updates and/or actions that necessitate OSL code to be executed once
(for instance, DIRECTORY CREATE), they have to be featured in the PackageInstall.phs
script, updated as shown at Code 12.

In the case of an update of PackageInstall.phs, the package will have to be re-
installed as described above ; on success, the screen will confirm that package has been
upgraded :

119

Code 12 An append to PackageInstall.phs to upgrade the package to Version 2.

[Instructions for Version 1]

«IF «piPackageVersion»<3»
«* Upgrade package to version 2*»
«SQL UPDATE (...)»
«LET _Ok=#SQLSTATUS#»

«ENDIF»

«IF _Ok==1»
«LET _PackageVersion=2»

«ENDIF»

After tables are created, queries on them can be executed in a simpler,
quicker way through Site management / Execute SQL (4.1.4).

The current versions of all installed packages can easily be checked thanks in Options
(4.6.1).

5.2.3 Uninstalling a package

Through Packages / Uninstall, a list of all packages is displayed ; clicking on a package
will execute the PackageUninstall.phs script that had been defined for this package
(5.1.4) and will remove it from the main screen. According to this script’s contents, data
may be erased irreversibly.

5.3 Using object types and objects to compose head-
lines

Packages, with their possibility to execute .phs scripts, offer vast advantages for headline
creation (2.4). More precisely, one single script can be used to produce several different
headlines, according to variables that are called object types and objects.

In Blue Chameleon Content Management System, these are managed in the way
shown at Fig.5.4.

There :

• as leaf frame (2.4.2) is edited within headline modify context, a script
PackageTypeObjList.phs displays a choice of several object types, one of which is

120

Figure 5.4: The process of selecting an object type and an object for a leaf
frame that is package-enabled.

chosen ;

• then, according to the chosen value, a choice of objects is shown through
PackageObjectList.phs ;

• upon selection of object, the couple of values (Object Type, Object) steers to the
right place of PackageObjectView.phs in order to generate, upon validation, an
information-specific headline that reflects the choices made.

In the current example, in order to make information pages for festivals and artists,
a practical application would be :

• make object types as "Festivals" and "Artists" ;

• for each, make objects as individual festivals and individual artists.

The following shows how this practical example is implemented.

5.3.1 Enabling a leaf frame to handle packages and an object

A leaf frame "Info Page" is created (2.3.1) to handle packages. Code 13 then shows what
has to be inputed for the frame’s content (during creation or modification).

It is to note that Code 13 is the same whatever the leaf frame or the package are.
Now, for the leaf frame’s variables, as shown in Code 14, the contents depend on what
should be handled in the frame’s layout.

In this code, "PO" stands for package object and "14" is the identifier for that type;
in between, a title for the object (which can be here either a festival or an artist) is given.

121

Code 13 A leaf frame’s contents to handle packages, for a single object :

Headline models / Modify / Info Page :

«INCLUDE PackageObjectView.phs;_PackageId=«POPackageId»;
_ObjectTypeId=«POObjectType»;_ObjectId=«POObjectId»;
_ObjectAttrType=«POStyleAttrType»;_ObjectAttrValue=«POStyleAttrValue»»

Code 14 A package-oriented frame’s variable for handling an object :

Headline models / Variables / Info Page :

PO;Festival/Artist;14;

5.3.2 PackageObjTypeList.phs

Code 15 shows how the code that proposes the choice between object types can be written.

Code 15 An example for PackageObjTypeList.phs :

<TABLE cellpadding="2" cellspacing="0" border="0">
<TR>
<TD>Festivals</TD>
</TR>
<TR>
<TR><TD>Artists</TD>
</TR>
</TABLE>

There, a choice between object types is laid out through a table ; each object type
must use function selectObjectType, with for arguments the identifier of the package
and a distinct number that will identify the object type.

Fig.5.5 shows the result of this script. On the Headline Modify Page for headline
"Rock and Stuff" - which template accepts leaf frame Info Page - as frame is edited,
the "Festival/Artist" variable previously defined for the frame is visible, along with a

button.

122

On click, the list of packages is shown and, upon selection of the "Festivals" one,
choice is then offered between the two defined object types.

Figure 5.5: A selection of object types.

123

5.3.3 PackageObjectList.phs

This script must use the variable iObjectType as set by the previous script to select the
right object list. As Code 16 shows, each object line has to redirect to the selectObject
function, which arguments are package identifier, object type identifier, and a distinct
number that will identify the object.

Code 16 An example for PackageObjectList.phs :

<TABLE cellpadding="2" cellspacing="0" border="0">
«IF @toi(iObjectType)==1» «*Festivals*»
<TR>
<TD>All festivals</TD>

</TR>
«SQLOUTPUT»
<TR>
<TD>«azName»</TD>

</TR>
«/SQLOUTPUT SELECT DISTINCT(azName), idFestival FROM OPS_FESTIVALS ORDER BY
azName»

«ELSEIF @toi(iObjectType)==2» «*Artists*»
<TR>
<TD>All artists</TD>

</TR>
«SQLOUTPUT»
<TR>
<TD><AHREF="javascript:selectObject(150,2,«idArtist»)">«azName»</TD>

</TR>
«/SQLOUTPUT azName FROM OPS_ARTISTS ORDER BY azName»

«ENDIF»
</TABLE>

The result of this script is featured at Fig.5.6, where, after "Festivals" from the object
type list is clicked, the list of festivals is proposed. Upon final selection, the page shows
well that "Festival/Artist" has been set to "Rock and Stuff".

If the wrong object or object type was selected, it is possible to reinitialize the Object

variable with the button.

The object name as featured on the final screen is set by a small script,
PackageObjectName.phs, described as follows.

5.3.4 PackageObjectName.phs

As shown in Code 17, following a similar structure as the previous one, this script makes
use of the now-existing iObjectId value (referring to the selected object) to simply fetch

124

Figure 5.6: Finally choosing the object.

its name.

125

Code 17 An example for PackageObjectName.phs :

«VAR NEW _Name=""»
«IF @toi(iObjectType)==1» «*Festivals*»
«SQLEXEC STRING _Name=SELECT azName FROM OPS_FESTIVALS WHERE
idFestival=«=@toi(iObjectId)»»

«ELSEIF @toi(iObjectType)==2» «*Artists*»
«SQLEXEC STRING _Name=SELECT azName FROM OPS_ARTISTS WHERE
idArtist=«=@toi(iObjectId)»»

«ENDIF»
«_Name»

5.3.5 PackageObjectView.phs

This script, as executed when the button is clicked after object was set, will
finally generate the headline.

Variables available there are _ObjectTypeId and _ObjectId, respectively identifying
the selected object type and object.

Code 18 then shows a template of how PackageObjectView.phs can be composed :
a first test on _ObjectTypeId steers to the right part of the script, where an other test
on _ObjectId decides which festival data has to be shown.

It is to note that this script, thanks to the object concept, works with any festival or
artist for which an information page has to be done : a single script to make them
all.

126

Code 18 An example for PackageObjectView.phs :

(...)

«IF @toi(_ObjectTypeId)==1» «*Festivals*»

«VAR NEW _Where=""»
«IF @toi(_ObjectId)<>0»
«LET _Where=" WHERE idFestival=@toi(_ObjectId) "»

«ENDIF»

«SQLOUTPUT»

(Display formatted festival information)

«/SQLOUTPUT SELECT * FROM OPS_FESTIVALS «_Where» ORDER BY azName»

«ELSEIF @toi(_ObjectTypeId)==2» «*Artists*»

(...)

«ENDIF»

5.4 Using attributes

The above described how to produce specific pages with the help of an "Object" variable.
Need may arise though to particularize a page even more ; Blue Chameleon Content
Management allows it, with the help of an "Attribute".

Basically, an attribute functions works as an object ; it is defined in the first place as
a leaf frame’s variable, then dedicated scripts (following the same pattern as the Object
ones, with different variable names) are written to handle attribute types and subsequent
attributes.

Finally, when a headline’s package-enabled leaf frame is edited, the attribute variable
will be featured below the object as new configuring option.

5.4.1 Enabling a frame to handle attributes

An attribute variable is added in the frame’s variables ; it is named "POStyle" and with
the identifier "15". In this example, it will bear the name "Style/Mode" :

Headline models / Variables / Info Page :

127

Table 5.1: Scripts, functions and variables as used for attribute setting

PackageAttTypeList.phs
Shows a list of attribute types :
...
<TR><TD>Style</TD></TR>
<TR><TD>Mode</TD></TR>
...

PackageAttValList.phs
Shows the list of attributes, corresponding to the selected type :
...
«IF @toi(iAttrType)==2»
<TR><TD>View only</TD></TR>
<TR><TD>Ticket book</TD></TR>

«ENDIF»

PackageAttrName.phs
Outputs the name of the selected attribute :
...
«ELSEIF @toi(iObjectType)==2» «*Mode*»
«IF @toi(iAttrValue)==1»
View only

«ELSEIF @toi(iAttrValue)==2» «*Mode*»
Ticket book

«ENDIF»
«ENDIF»

PO;Festival/Artist;14

POStyle;Style/Mode;15

5.4.2 Scripts for attribute

Table 5.1 shows how what scripts are attribute’s own, along with code snippets.

When the PackageAttTypeList.phs, PackageAttValList.phs and PackageAttrName.phs
scripts have been written, the _ObjectAttrType and _ObjectAttrValue variables can
then be used within the PackageObjectView.phs script along with the object variables.
Here is an example on how they can be integrated :

(...)
«IF @toi(_ObjectTypeId)==1» «*Festivals*»

128

«VAR NEW _Where=""»
«IF @toi(_ObjectId)<>0»
«LET _Where=" WHERE idFestival=@toi(_ObjectId) "»

«ENDIF»

«SQLOUTPUT»
(Display formatted festival information)
«IF @toi(_ObjectAttrType)==2 && @toi(_ObjectAttrValue)==2 »«*Mode : Book

ticket*»
<IMG SRC="«#SQLWWWHOME#»/img/BookNow.gif" STYLE="cursor:pointer"

onClick="onBookNow(«idFestival»)"/>
«ENDIF»

«/SQLOUTPUT SELECT * FROM OPS_FESTIVALS «_Where» ORDER BY azName»

«ELSEIF @toi(_ObjectTypeId)==2» «*Artists*»
(...)

5.5 Featuring multiple objects on the same headline
The previous sections aimed at describing how a headline containing a single object could
be composed ; now, the flexibility of Blue Chameleon Content Management System’s ob-
ject and attribute system allows, as a matter of fact, more than one object to be featured
on the same headline.

Indeed, a need for such might arise for instance when multiple elements (as gathered
from the database) should be displayed on the screen, but along different styles ; and
administrator should be able to manage them easily.

Fig.5.7 shows an instance of that need, in the current example we followed. A headline
called "Featured Artist of the Day" aims to feature in an extensive manner a particular
artist (i.e. displaying all possible available information on her/him), while also featuring,
at the bottom the page (and prefaced by such phrase as ’Other artists of interest...’) two
other artists, but in a far more minimalistic fashion.

Each artist to display will be treated as an object, but each will have a different
attribute : for instance the attribute "HUGE showcase" for the main one, and "Small
showcase left", "Small showcase right" for the two others. Thus, to implement it : a leaf
frame "3-artist frame" will be defined as follows, handling 3 objects and 3 attributes.

129

Figure 5.7: A page design that calls for multiple objects to be featured.

5.5.1 A leaf frame that handles multiple objects

In Code 13, it can be seen that a single call to system function PackageObjectView.phs
was made, with a single family of arguments (POObjectType, POObjectId,...).

Now, in order to display the multiple objects that we need, it is no simpler than to call
the same function, but as many times as we need it (3 times here), and each time with
a new set of variables : Code 19 then shows the result. It can be seen that variables are
named PO1{...}, POStyle1{...}, PO2{...}, POStyle2{...}, etc. for each to be unique.

The contents must feature the page’s HTML formatting in advance ; for instance, here,
the TABLE formatting to display the ’lesser’ artists one besides the other.

As for the frame’s variables, they will thus be defined as shown in the same Code, at
the bottom.

130

Code 19 A leaf frame’s contents and variables to handle packages, for 3 objects :

Headline models / Modify / 3-artist frame :

<!– Main Artist –>
«INCLUDE PackageObjectView.phs;_PackageId=«PO1PackageId»;
_ObjectTypeId=«PO1ObjectType»;_ObjectId=«PO1ObjectId»;
_ObjectAttrType=«POStyle1AttrType»;_ObjectAttrValue=«POStyle1AttrValue»»

<TABLE>
<TR>
<TD> <!– Artist on the bottom, left –>
«INCLUDE PackageObjectView.phs;_PackageId=«PO2PackageId»;
_ObjectTypeId=«PO2ObjectType»;_ObjectId=«PO2ObjectId»;
_ObjectAttrType=«POStyle2AttrType»;_ObjectAttrValue=«POStyle2AttrValue»»

</TD>
<TD> <!– Artist on the bottom, right –>
«INCLUDE PackageObjectView.phs;_PackageId=«PO3PackageId»;
_ObjectTypeId=«PO3ObjectType»;_ObjectId=«PO3ObjectId»;
_ObjectAttrType=«POStyle3AttrType»;_ObjectAttrValue=«POStyle3AttrValue»»

</TD>
<TR>

</TABLE>

Headline models / Variables / 3-artist frame :

PO1;Main Artist;14
POStyle1;Display style 1;15

PO2;Artist, Left;14
POStyle2;Display style 2;15

PO3;Artist, Right;14
POStyle3;Display style 3;15

131

From the unicity of the Object and Attribute scripts, a new package could be
defined so as to keep various functionalities in the same publisher. Indeed, as a
_PackageId variable is used for each PackageObjectView.phs call (Code 19), a
single frame can use different packages.
As a matter of fact, as Fig.5.5 well showed, the selection of an object always starts
by a list of available packages. .

5.5.2 Packages : defining more of them

In the current example, a "Festivals" package had been previously defined, with its Ob-
ject and Attribute scripts. Now, for the needs of the page "Featured Artist of the Day"
we aim to build, we need to define new scripts. In order to not delete the previous ones,
it is possible to define a new package (for instance called ’Artist News’) where
we will define our new scripts.

In the new PackageInstall.phs script, no SQL table would have to be created if our
new needs are covered by the previously-created tables (OPS_ARTISTS, for instance) : any
table defined in a package context is accessible by any package.

Nonetheless, a new package is a great occasion to expand available information : for
instance, this new package could entail the creation of a OPS_ARTISTS_MORE, aimed at
containing far more detailed information about artists (biographies, member(s), instru-
ments played,...).

5.5.3 Object and attribute scripts for this case (guidelines)

The Object scripts (not PackageView.phs), in the current example, would be aimed at
artist selection only. It could be then quite practical to define object types as musical
styles and thus offer an easier, quicker way to select which artists to be featured on the
headline :

PackageObjTypeList.phs :

(...)
<TD>

«azMusicalStyle»</TD>
(...)

PackageObjectList.phs :

(...)
<TD>

«azArtist»</TD>
(...)

132

For attributes, there is no need to define several types of them : one default type is
enough, holding three attributes, one for each display style :

PackageAttTypeList.phs :

<TD>Default</TD>

PackageAttValList.phs :

«IF @toi(iAttrType)==1»
<TABLE>
<TR><TD>HUGE showcase</TD></TR>
<TR><TD>Small showcase left</TD></TR>
<TR><TD>Small showcase right</TD></TR>

</TABLE>
«ENDIF»

As for the scripts used for displaying names, PackageObjectName.phs and PackageAttrName.phs
are built in accordance with PackageObjectList.phs and PackageAttValList.phs.

The result of those, on the Headline Modify Page is featured at Fig.5.8.

133

Figure 5.8: The 3-object frame after all relevant choices of objects and at-
tributes have been made.

5.5.3.1 The PackageObjectView.phs script for this example

Finally, the PackageObjectView.phs script for which a sketch is shown at Code 20, will
generate the headline ; it will be executed three times (i.e., as many times as there are
INCLUDE’s in the frame’s code) by the system upon click of the button. For each
time, the system will set the right variables for the current object type/object and the
attribute type/attribute value.

134

Code 20 An example for PackageObjectView.phs for the ’Artist News’ package :

(...)

«IF @toi(_ObjectAttrValue)==1» «*Main Artist Display*»

Today’s featured Artist to NOT miss
«*Fetch artist information using _ObjectId *»

(...)

«ELSEIF @toi(_ObjectAttrValue)==2 || @toi(_ObjectAttrValue)==2» «*Display for
the two other artists*»

«*Fetch artist information using _ObjectId *»
(...)
«_Name»

(«_MusicalStyle»)

«ENDIF»

More precisely, at the first turn, (mentioning only the variables of interest) the
object value will correspond to Josh “Lizard“ Jones’ identifier and an attribute value
_ObjectAttrValue of 1, thus producing the ’Today’s featured Artist to NOT miss’ part.
On the next two turns, identifiers will correspond to the two other artists, and the at-
tribute values of 2 and 3 will produce the smaller display.

It is to note that the table disposition of those two last objects was already done when
frame was defined (Code 19), so there is no need to do it here.

135

136

Chapter 6

Annex

6.1 Leaf frame variables

Variables of a leaf frame must be given in the following manner,

Name;Label;Type;[Data]

where :

• Name is the name of the variable, that will be used in the leaf frame model’s contents;

• Label is the label under which, in the context of leaf frame editing, the variable
will be prompted ;

• Type is an identifier describing the type of variable (see Tables 6.1, 6.2 below) ;

• Data is a string of parameters : it is only given for ’select’- or ’SQL select’- type
variables (6.1.2, 6.1.3) and empty for all of the others.

137

Table 6.1: Leaf frame variables

Type id. Type Example Leaf frame edit

1 Text edit _Text;City;1;

2 Text area _Comment;Comments;2;

3 Image _Pic;Photo;3;

4 Link _Link;Link;4;

5 Script (view) _Skr;Script;5;

6 Shared varfile _Varf;File;6;

7 Table see 6.1.1

8 Script (edit) Deprecated Deprecated

9 Select see 6.1.2

10 Download _Dwnl;Download;10;

138

Table 6.2: Leaf frame variables (continued)

11 Anchor _Ank;Anchor;11;

12 Menu _Menu;Menu;12;

13 SQL select see 6.1.3

14 Package object PO1;Main Artist;14;

15 Attribute POStyle2;Display style 2;15;

These variables are then practically integrated in leaf frames thanks
to system scripts as detailed at Tables 6.4 and 6.5.

6.1.1 "Table" variables

6.1.2 "Select" variables

They ultimately serve as to provide, as featured on Table 6.1, a drop-down menu filled
with elements.

The variable is set for instance as follows :

_Cntr;Country;9;USA/Canada/UK/...

Here, the [Data] string lists values, separated by slashes, that will be featured in the
drop-down menu while editing the leaf frame. Upon previewing (and after, publication)
of the headline, the variable will be set to the very value that was chosen, for instance :

139

The [Data] string can be defined in a more elaborate manner with value=label
couples, also separated by slashes, for instance as follows :

_Rezur;Reservation;9;-1=N.A./0=Non necessary/1=Mandatory

During editing of the frame, the drop-down menu will display the labels "N.A.", "Non
necessary"... and, upon validation of the headline, the variable «_Rezur» will be assessed
the corresponding value (-1,0,...).

6.1.3 "SQL select" variables

Those variables work in a similar manner as the previous ones, i.e. a drop-down menu is
provided, with elements corresponding to values. Except here, the couples value=label
are generated by a SQL query, a SELECT, done so as two columns of a table are the result
of the query :

_Price;Festival;13;SELECT DISTINCT(azName),mPrice FROM OPS_FESTIVALS
a,OPS_TICKET_PRICE b WHERE a.idFestival=b.idFestival

This query will generate two columns with the festival name and its corresponding
price, and, upon validation of the headline, the variable «_Price» will amount to the
chosen festival.

6.2 System script glossary

6.2.1 Headline model scripts

During the composing of a headline model’s contents (and also for list and container
models), some system scripts are called. Table 6.3 sums them all.

For ’Text edit’, ’Text area’, ’Select’ and ’SQL select’ vari-
ables, they are simply inserted via «_Variable», e.g. «_Text»,
«_Comment», «_Cntr», «_Price». .

140

Table 6.3: System scripts for headline, list and container models

Name Call & Function
design.phs «INCLUDE design.phs»

Enables the and buttons to appear when a headline
created from this model is edited. It is therefore a mandatory script.

frame.phs «INCLUDE frame.phs;_ParentId=«_FSId»;_FrameIndex={1,2,...}»
For models that can have children (headlines, containers, lists), loads the
frame number 1, 2,... This script must be called as many times as model
has children frames, and those calls must be disposed, HTML-wise, in a
manner that mirrors the desired layout of the page.

metatags.phs «INCLUDE metatags.phs»
Placed in the <HEAD>...</HEAD> section of the headline model’s con-
tents, inserts into the same section of the rendered .htm page the meta-
tags that were filled on headline’s Manage page.

ListItems.phs «INCLUDE ListItems.phs;_ListFrameItems="_ItemCount"»
In the case of a List model, puts into the variable _ItemCount (that
has to be initialized before call) the number of list items that the list
currently holds. It is then used to call frame.phs this very number of
times.

form.phs «INCLUDE form.phs»
Will enable the headlines generated from this model to use forms.

6.2.2 Leaf frame model scripts

Leaf frame models have also their system scripts, aimed at loading their variables, as
detailed in Tables 6.4 and 6.5.

141

Table 6.4: System scripts for leaves

image.phs «INCLUDE image.phs;pImage="_Pict";Html="border=’0’..."»
Loads the image as referred to by the variable _Pict ; the Html="..."
string can be used to give any HTML additional parameter. As a result,
the following tag will be generated :
<IMG WIDTH=.. HEIGHT=.. ALT="..." SRC="..." additional
parameters >

«INCLUDE image.phs;pImage="_Pict";_URLOnly=1;_Return="_Url"»»

This calls will store in variable _Url the address of the image.
href.phs «INCLUDE href.phs;_Link="_Link";Parameters »

Inserts a link as referred to by variable _Link, in different manners as
specified by Parameters :

•StartTag : generates the tag if any link has been selected
by the user ;
•EndTag : generates the closing tag if necessary ;
•NoText : the generated tag is trimmed so that it does not
contain any redundant blanks or lines ;
•Target : will add the specified target to the <A HREF="..."
TARGET="Target"> tag ;
•JustUrl : (as a unique parameter) returns only the address of the link ;
•_Return=_ReturnVAR : makes href.phs not give out HTML tags, but specific
information as stored in a _ReturnVAR variable that must be initialized before
call. The various _ReturnVARs specify the information :

� _ReturnAddress contains the URL of the link
� _ReturnType contains the type of the link. Possible values are article, headline,

URL, download, anchor and book
� _ReturnStyle contains the name of the file containing the link style
� _ReturnStyleId contains the Id of the link style.

•AddDomain : forces the coding of the domain specified for the publisher in the
URL ;
•_OPSLink : forces the link to be made to the OPS name of the arti-
cle/headline/page object even if the user has indicated an publication name.

scriptfile.phs «INCLUDE scriptfile.phs»
Enables the leaf frame to load scripts. If the published page is
meant to be used dynamically, the commands «VAR NEW _Dynamic»
«_Dynamic="yes"» must be placed before the call.

varphile.phs «INCLUDE varfile.phs;_Action={1,2};_File="_MyFile"»
Loads (_Action=1) or unloads (_Action=2) the variables defined in the
varfile as referred to by _MyFile. Between these two commands, the vari-
ables defined by the selected varfile can be used as if they were variables
defined for the current leaf.

142

Table 6.5: System scripts for leaves (continued)

table.phs «INCLUDE table.phs;_Table="_Tbl";_Align="Align "»
Inserts a table as referred to by variable _Tbl with the Align pa-
rameter being any of the alignments used for TD tags (left, right...)

download.phs «INCLUDE download.phs;_Download="_Dwnl"»
Generates the , tags around the download
description as relevant to the _Dwnl variable.

anchor.phs «INCLUDE anchor.phs;_Anchor="_Ank"»
Generates the tag for the anchor as referred to by
variable _Ank.

showmenu.phs «INCLUDE showmenu.phs;_Menu=_Menu»
Loads the menu as referred to by the variable _Menu.

PackageObjectView.phs see 5.3.5, 5.4

6.3 Icon glossary

Tables 6.6 and 6.7 sum up what is the role icons as used during the editing of pages and
in other contexts.

143

Table 6.6: Blue Chameleon Content Management icons

Icon [Context] and Action

[Headline edit]
(Layout) •If a headline, list, container can use several types of frames

(2.2.3.1.1), this icon leads to a page where the frame to use there
is selected.

[Headline edit]
(Edit) •Edits a leaf frame, i.e. leads to a screen where its variables

(text areas,...) are filled.
[Menu item (3.5.3.1)]

•Edits the menu item’s text and link.
[Form model (3.6.1.1)]

•Edits that paramater of a form model.
[Modify Form Page (3.6.3)]

•Edits a specific page of a form.
[A page of a form (3.6.3.3)]

•Edits a form element.

[Headline edit]
(Extd. edit) •Changes the parameters of the scripts, as well as the scripts

that are selected for frames that handle them (in extended mode
only, appearance set in 2.3.4)
[Menu item (3.5.3.1)]

•Displays the output of the script related to this menu item.

[Headline edit]
(Style) •Accesses the frame style settings (2.3.4)

[A page of a form (3.6.3.3)]
•Leads to a screen where the style of the form element (checkbox,

listbox,...) is selected (3.6.3.2).

[Headline edit]
(Hide/Display) •Hides/shows a frame (appearance set in 2.3.4)

[Menu item (3.5.3.1)]
•Hides/shows a menu item

[Headline edit]
(Add elt.) •For list frames, adds a single list element downwards.

[Menu item (3.5.3.1)]
(Append) •Appends a child element for a menu item (3.5.4)

144

Table 6.7: Blue Chameleon Content Management icons (continued)

Icon [Context] and Action

, [Various]
(Add elt up, down) Respectively allow to add an element before (if not the first) or

after (if not the last) current element. Occur for :
•list elements ;
•form pages ;
•form elements ;
•menu/submenu elements.

, [Various]
(Displace elt up, down) Allow to place element before the previous one (if not on the top)

or after the next one (if not on the bottom). Occur in the same

places as , except form pages.

[Various]

(Remove) Deletes an element. Occurs in the same context as for , .

6.4 Form page elements : detailed

The following shows how the various form page elements (3.6.3.3) such as checkboxes,
listboxes,... are composed. Whatever the kind of element, this is always achieved via the

icon.

6.4.1 "Active" elements

The following deals with elements on which, on the final form, actions such as checking,
filling, selecting... will be done.

6.4.1.1 Checkboxes

Fig.6.1 is how the checkbox choice as seen in "Form preview" (3.6.3.5) has been composed.

There, apart from the label that will appear on the final form :

• the range of values are given in a <val>=<label> manner ; the chosen <val> is the
value that will be assessed to the CGI variable as given by ’Name’, here element20
; a default value (checked when form is accessed) can be chosen ;

• how the checkboxes will be disposed is chosen, either on a single line or one below
another ;

• the visibility for the form element is selected, from ’hidden’/’visible’/’editable’.

145

Figure 6.1: Composing a checkbox selection for a form.

6.4.1.2 Radiobuttons

They are configured in the exact same way as for checkboxes, except that on the final
form, of course one only item will be allowed to be selected.

6.4.1.3 Listboxes

Listboxes, which provide three different styles, allows the same configuration method
(<val>=<label>) and choices as for checkboxes, except there is no disposition choice.

The three styles are :

• ’single selection’ : a standard drop-down menu, from which only one item can be
chosen :

146

• ’multiple selection’ : several items can be chosen, by clicking and holding Ctrl :

• ’chained selection’ : two drop-down menus will be available, with the choices of
the second (secondary list) depending on what was chosen for the first (main list).
Main list elements are labelled <valA>=<labelA>, while secondary list elements
<valA>/<valB>=<labelB> if this element B belongs to main list element A. For
instance :

As a result, if for example ’2011’ is chosen in the first menu, only the corresponding
choices for the secondary list (Jan’ 2011, Feb’ 2011,...) will be available :

6.4.1.4 Input field and text area

The only configuring possibility for these two are :

• choosing whether input field will be ’normal’ or ’password’ (in that case hiding the
typed content) ;

• choosing the width x height of the text areas, amongst various values (given in
number of characters x number of lines).

147

6.4.1.5 Form label - ’with check box’

This choice for ’Label’ allows to display a read-only text with a single checkbox before it.

6.4.2 "Passive" elements

These elements consist on graphical elements that will not be acted on the front-end
form.

6.4.2.1 Hidden field

A hidden field form object is simply assessed a value, which is then remembered during
form edit :

6.4.2.2 Form image

The choice for a form element allows to include an image into
the form. Image selection is then similar to anywhere else in the Publisher :

6.4.2.3 Form label - ’normal’

This choice for ’Label’ type allows to display just a read-only text on the final version of
the form.

148

6.4.2.4 Form separator

A form separator input is a centered horizontal line (corresponding to HTML’s <HR>), which
width is chosen amongst a range of percentages relative to page width.

149

	Configuring and administration
	System interface
	Users and usergroups
	Users
	User groups that a user belongs to
	User management through time

	User groups
	User groups access rights

	Blue Chameleon Content Management System user rights
	Rights on headlines
	Rights on Articles
	Rights on page objects
	Rights on Images
	Rights on Search
	Rights on URLs
	Rights on columns
	Rights on publishing
	Rights on Data Base Publishing
	Rights on Editions
	Rights on Background Frames
	Rights on Downloads
	Rights on Site management
	Rights on Article Models
	Rights on Headline Models
	Rights on Notice boards
	Rights on System log
	Rights on Scripts
	Administrator rights
	Rights on Hermetic groups
	Information level
	Rights on Books
	Rights on Book Models
	Java option menu
	Connection speed
	Rights on User management
	Rights on Menus, Menu Templates
	Rights on Packages
	Rights on Forms

	Columns
	Publisher and objects
	Creating columns
	Managing columns
	Changing columns
	Updating columns
	Backups

	Blue Chameleon directory structure
	Virtual columns

	Publisher settings
	File types

	FTP profiles

	Composing content
	Principles
	Headlines models
	Creating a new headline model
	Updating a headline model
	Contents of a headline model
	Enriching a headline model with frames
	Frame templates used by a headline model
	Updating frame number

	Meta Tags

	Frame templates
	Creating and updating frame templates
	"List" frames
	"Leaf" frames
	Frame style

	Headlines : creation and editing
	Editing a headline : a basic example
	Editing a leaf frame
	Editing a list frame
	Example for a leaf frame as used by a list

	Layouts
	Articles and article models
	Managing pages
	Publishing pages
	Multiple publish
	Scheduled publishing

	Properties of headlines
	Other management options for pages

	Object management
	Images
	Uploading an image
	Image folders
	Managing images
	Integrating images

	Links
	Creating a URL link
	Managing URL links
	Integrating links

	Scripts
	Creating a script - Management
	Integrating a frame script
	Integrating a link style script

	Downloads
	Creating a download
	Managing downloads
	Integrating downloads

	Menus
	Menu scripts
	Menu models
	Creation of a menu
	Filling of a menu
	Menu result and integration

	More complex menus
	A menu script that handles children menu items
	A menu with children menu items

	Forms
	Form models
	Form model management - parameters

	Defining forms
	Updating a form

	Composing a form
	Editing a form page
	Form page element types
	Editing a form page element
	After form is submitted
	A form result
	A form with several pages

	Integrating a form

	Variable files
	Example of varfile contents
	Varfiles as variables

	Other elements
	Site management
	Uploading files
	Creating directories
	Managing files and directories
	Executing SQL
	Export and Import
	Generating export files - importing them
	Export file contents

	Model defaults
	Model defaults and headlines

	Books
	Book models
	Creating books
	Modifying a book

	Notice boards
	Creating and managing notice boards
	Association with a column
	Notice board entries

	Editions
	General edition management
	Publishing editions

	Options
	Version
	System Logs
	Expiration report

	Searching for content
	Management of objects

	Packages
	Mandatory scripts
	PackageInstall.phs
	PackageGroupModify.phs, PackageGroupModify1.phs
	Result : package group rights

	PackageMain.phs
	Result : package main page

	PackageUninstall.phs

	Package general management
	Installing a package
	Updating a package
	Uninstalling a package

	Using object types and objects to compose headlines
	Enabling a leaf frame to handle packages and an object
	PackageObjTypeList.phs
	PackageObjectList.phs
	PackageObjectName.phs
	PackageObjectView.phs

	Using attributes
	Enabling a frame to handle attributes
	Scripts for attribute

	Featuring multiple objects on the same headline
	A leaf frame that handles multiple objects
	Packages : defining more of them
	Object and attribute scripts for this case (guidelines)
	The PackageObjectView.phs script for this example

	Annex
	Leaf frame variables
	"Table" variables
	"Select" variables
	"SQL select" variables

	System script glossary
	Headline model scripts
	Leaf frame model scripts

	Icon glossary
	Form page elements : detailed
	"Active" elements
	Checkboxes
	Radiobuttons
	Listboxes
	Input field and text area
	Form label - 'with check box'

	"Passive" elements
	Hidden field
	Form image
	Form label - 'normal'
	Form separator

