Expanding Blue Chameleon : Add-On
Development Documentation

CHAMELEON

November 14, 2013

Chapter 2

A guide to developing your Blue
Chameleon Add-On

Blue Chameleon brings company management concept to a higher plane by giving you
the power to develop the add-on that suits your needs. You will be able to create your
own screens, forms, data elements... and act on them as a full-fledged part of your Blue
Chameleon account.

The scripting language 0SL (see Chapter 1), though better suited to be handled by I'T
people already familiar with programming concepts, database manipulation and HTML
layout, still remains simple, straightforward and quick to learn.

2.1 The structure of a Blue Chameleon Add-on

Inside Blue Chameleon, an add-on is made of different components :

e a .phs library, resulting from the compiling (2.2.1]) of individual .phs files written
in Blue Chameleon scripting language 0SL ;

e files such as html files, Javascript . js files, custom style sheets .css, images...

The .phs library and the other files are to be uploaded (2.2.2)) onto their dedicated
directories, respectively called the SysLibHome and the PublisherHome :

SysLibHome :

AddOn.phs /srv/www/0s1/0SS/ [YourShopName] /

1

PublisherHome :
Header .html /srv/www/htdocs/IncShop/IncModelShop/ [YourShopName] /
processStuff.js
MyOwnStyle.css

Banner. jpg

Ll

25

/srv/www/htdocs/IncShop/IncModelShop/ [YourShopName] /js/
/srv/www/htdocs/IncShop/IncModelShop/ [YourShopName] /css/
/srv/www/htdocs/IncShop/IncModelShop/ [YourShopName] /images/

In the above, [YourShopName] is the alphanumerical, 16-character string featured in
your shop login page URL
(http://wwwl.inc.lu/IncShop/IncModelShop/ [YourShopName] /osslogin.htm).

2.1.1 How .phs pages are interpreted and displayed

The following address displays for instance the "Default.phs" page belonging to a com-
piled MyLibrary library :

http://wwwl.inc.lu/Scripts/sql.exe?SqlDB=[YourShopName] &Sql=MyLibrary:Default.phs
&xid=123...&Varl=&Var2=. ..

It is made of the following elements :
e the Blue Chameleon shop server, calling the sql.exe script (which interprets the
OSL language) ;
e a string of CGI variables, amongst which three are essential :
— Sq1DB, which identifies your shop ;
— Sql, which is the page that is displayed, always in the form LibraryName:Page.phs ;

— xid, which is an alphanumerical string (automatically generated upon login)
identifying your session.

2.2 Basics of add-on developing : how it is integrated

Generally speaking, as summed up on Fig[2.T[the process of developing your own add-on
will consist in :

e write the . phs files that constitute it (mandatorily including a ossModuleRegister.phs

one, see [2.3.1.1)) ;

e compile them into a compiled library (AddOn.phs) ;
e upload this library to your shop’s SysLibHome ;

e register your library and create related menu element (this has only to be done the
first time).

AFGT‘ add-on to be registered, it must contain a
ossModuleRegister.phs script (2.3.1.1)).

The add-on has to be registered first and inserted as a menu, before being accessible.
After, developing will consist only in generating the library and uploading it.

@It is to note that file names (including the .phs extension) should not
be greater than 23 characters.

26

developed phs scripts

o 3 @ @ .. (o

AddStuff.phs Default.phs EditStuff.phs RmvStuff.phs ossModuleReg
ister.phs

‘ sgqllib.cmd

Generated library

| _§ upload

to SysLibHome
Addon.phs

Figure 2.1: A single compiled library AddOn.phs is generated and is to be
uploaded unto the SysLibHome.

2.2.1 Compiling your .phs files
All of these files need to be placed in the same directory. Then, the sqllib.cmd (or

sqllib.sh) executable will generate the compiled library AddOn.phs (final name can be
set by modifying executable).

2.2.2 Uploading your library and files

Uploading of compiled library and, if applicable, of other files, is done respectively in the
SysLibHome and PublisherHome directories as cleared up in 2.1

2.2.3 Registering your add-on

Registering your add-on inside your shop - as well as menu-related concerns
- has only to be done once.

Inside the Blue Chameleon environment, the add-on you develop is called a ’custom li-
brary’, which has to be registered as such. The process of doing so is described at Fig[2.2]

It has to be emphasized that the name as entered in the ’Library:’ field must corre-
spond exactly to the uploaded library’s name, minus the .phs extension.

The 'Label:” can be entered as a multilingual string ([2.3.3)).

27

mf' Personalization] Custom libraries [[Add new library] :

Add custom library

Library: |AddOn |

Label: |My New Add-On]

Type:

Add

Mew library successfully added.

Figure 2.2: The compiled library AddOn.phs is added.

2.2.3.1 Setting a new menu script and a menu element for the add-on

&H‘“n& User rights for menu script management can be set up either at the Modify
User Page or the User Right Page under the element

Script management

Ideally, your add-on would be accessed through the menu. For this to be possible, a
‘menu script’ has to be created. It will link to the entry point, which is the page of your
add-on your want to be displayed when accessing it, for instance Default.phs. Fig[2.3]

features how a new menu script is added, provided that the custom library has been well
registered as described above.

Personalization f Menu scripts][Add new menu script] :

Add menu script

Script: ["Backnﬂ‘ice menu option" Script | =
Library: | AddOn - My New Add-On =
Name: My New Add-On

Button text: [My Mew Add-0On

R R W B W) S S

Scrlptflle |AddOn:Default phs

6=

Mew menu script successfully added.

Figure 2.3: This enables to make the new add-on accessible (more precisely,
its Default.phs script) from menu configuration.

It is to note that the "Script file:" as featured there must always be entered this form
: add-on name, colon and script file. The 'Button text:” can be entered as a multilingual

28

string ([23.3).

Once created, as shown in Fig, the add-on name (as typed in the 'Button name:’
field) now appears in the list of available procedures while at the Menu Configuration
context.

| Standard menu | % |
m;" Main menu / :

|Add-ons; Suppléments systd - - - -

[My Mew Add-On ~|

Figure 2.4: The add-on is indeed now available to be added as a menu
element.

Nonetheless, for the new add-on to appear at the menu (here through),
the menu script user rights to the add-on must be set.

2.2.3.2 Setting the add-on’s access rights

As shown on Fig[2.5] the add-on’s access rights are now featured on the Modify User
Page under |Menu script user rights :]. When they are set sufficiently, the new add-on
can be accessed.

2.3 Basics of add-on developing : how to organize your
.phs scripts

Fig2.6)illustrates in a general way how an add-on could be ideally structured. An add-on
is constituted of a "main" .phs file, most conveniently named Default.phs and which

is the entry point when registering the library (2.2.3.1)).

As the add-on is developed through time, other script files are created. They might
be called by Default.phs or between each other, by the way of INCLUDEs (|1.4.1)) and

forms ([2.4.3.2)).

Also, it is to note that "outer" scripts, especially belonging to the ossbo library, may
have to be called, for inserting header/footer (2.3.2)), getting user rights (2.5.1))... ossbo
is Blue Chameleon’s main library.

As for a .phs script itself, it may be composed most conveniently along general
guidelines, as shown in Fig2.7

29

EEEEEN / sers / Users / Tom ;

Menu script user rights:

My New Add-On | Delete/Create/Modifyl % | | Delete/Create/Modify 2 |

oy]

Home | General Articles Clients Sales | Add-ons Options Logout Admin

ﬂ Agenda
File manager
Helpdesk
Mews
Projects
Statistics r
Tasks
My Mew Add-On

Home | General Articles Clients Sales | Add-ons Options Logout Admin

ﬂ Do stuff

| Add stuff || Edit stuff || Remave stuff |

Figure 2.5: Access user rights for the new add-on, initially set by default to
"None’, are raised up for user Tom and add-on thus becomes accessible.

2.3.1 "oss-" scripts : the basics

These are scripts that will be recognized and used by Blue Chameleon to provide vari-
ous things such as the registering of your library (ossModuleRegister.phs, mandatory),
dedicated user rights (ossUserConfig.phs, ossUserModify.phs)...

The oss- scripts that your add-on (or any library, for that matter) has been equipped
with can simply be seen checked as seen in Fig[2.§8

AFO’P a new oss- script to be registered, it is mecessary to
‘recheck custom libraries’ via

M/ Personalization / Check custom Iibraries.

More about oss- scripts can be found at

30

My Mew Add-0On

pPefault.phs|

- - =ps8bo i SomeScript . pha

DoStuff.phs

=Do0cherStelff .phs

DisplayThis.phs

—=Addon:DoStuff .phs B

i —Addon:DisplayThis.phs

=32dd0on:ProcessThat .. phs

[PeothecrStuff . phs

[Proces=sThat . phs|

Figure 2.6: An example of the branching between .phs files in an add-on.

2.3.1.1 ossModuleRegister.phs

This script, which has to be included amongst your set of .phs files, simply consists in
one line :

«RETURN 1003»

"1003" there is an example, any integer over 1000 can be taken. This number is called
the signature of the library and it is used to identify it (see Fig{2.8)).
2.3.1.2 ossUserConfig.phs, ossUserModify.phs

How to compose these library-right-generating scripts is explained in detail at Making
custom library user rights for your add-on (2.5.3)).

2.3.2 Headers and footers

In order to have your add-on displayed in the same style than the rest of Blue Chameleon,
it is advised to include, around the beginning, the "Header.phs" script (belonging to
library ossbo), in the following way :

«VAR NEW _Title="My page title;Mon titre de page;Mein Seitentitel"»
«INCLUDE ossbo:Header.phs;_Title=_Title;_Style="print";»

31

Including “starting”
scripts:

= Header

* Userrights

-

Testing current user > o
rights to go on or exit

the script /

Defining variables,

Defining the layout of the
page with forms,

Example

.phs

-f}———— «INCLUDE...=»

«IF UserRights...»

-

’,..-tI.-ET. + =B

I(-ﬂ'-:'lll:tlll —

«IF...»

<TABLE ...>

inputs,... ; operating o <LET
variables, SQL data... PR S
calling scripts... «50L...»

Optionally including a
footer

<TABLE ...>
«INCLUDE. . . »
<FORM ...>

-

-o—}_ «INCLUDE...=»

Figure 2.7: A .phs file may be composed in this rather practical way.

m,‘ Personalization f Custom libraries ;“'Adan - AddOn -

View custom library

Library: Addon
Signature: 1003
Label: Addon
Type: General

Available scripts:

osslserConfig

osslserModify

Figure 2.8:

(8]

(8]

oss- scripts that the add-on contains.

The presence of

ossModuleRegister.phs is confirmed by the existence of a "Signature:’.

with :

e _Title being the title you want to give to the page generated by the script, as
displayed in the top of the browser’s window. It can be entered as a multilingual

string (2:3.3) :

32

e _Title="print" calling for Blue Chameleon’s usual css style sheet, but it is
possible to use your own, for instance _Style="MyOwnStyle" (provided that a
MyOwnStyle.css has been uploaded to PublisherHome/css).

As for the footer, as included via «INCLUDE ossbo:Footer.phsy, it allows to display
the links as featured in Fig[2.9] enabling, for this page :

e to go back to the previous one ;
e to reload it ;
e to print it ;

e to add it as a User Menu link (see Blue Chameleon Documentation, General
Interface Handling, Link management).

Home General | Arlicles | Clhienls Sales | Add-ons | Oplions | Logoul Admin

[A Blue Chameleon Page]

eREp——y

Back - Reload - Print - Add as link

Figure 2.9: These four links are enabled by script ossbo:Footer.phs.

A

These header and footer are to be included in the script only if it displays a
new page ; it is unnecessary to feature them in scripts that do not display anything
on screen, nor in INCLUDE'd scripts.

33

2.3.3 Languages

As Blue Chameleon can handle different languages that you enable while at the Merchant
Configuration Page , you might want to make sure that - especially if users have selected
different preferred languages -, any displayed text element of your add-on is provided
through a multilingual string, i.e. as an example My Text;Mon Texte;Mein Text;....

This multilingual string, when it has to be displayed, is then interpreted with the
WRITE LANGUAGE command.

For instance, while the following code would display a 223N hutton only in En-
glish :

<input type="submit" name="Search" value="Search">

...this code below, on the other hand, would display if user’s preferred

language were German :

<input type="submit" name="Search"
value="«WRITE LANGUAGE Search;Chercher;Sucheny">

Therefore, if you wish to allow any piece of text to be displayed according to user’s
preferred language, you should replace it by command «WRITE LANGUAGE My Text;Mon
Texte;Mein Text;...» for as many languages that you have enabled at the Merchant
Configuration Page. The order of languages is as follows :

’ Language \Value‘
English
French
German
Dutch

Portuguese

Luxembourgish
Spanish
Italian
Swedish
Polish
Hungarian
Russian

—| =
| S| | o o x| w| | =

—
[\

Function @languageitem also performs the same duty :
«=0languageitem("Search;Chercher;Suchen")»

If multilingual string is to be used in an Ajax environment, display issues might arise
if special characters or accented letters are involved : it is then advised to use function
@atohtml2 (|1.10.6.2), or more directly the following syntax :

34

«WRITE LANGUAGE %html;Next;Précédent ;Nichst»
or also
«%html ;=@languageitem("Next;Précédent;Ndchst")»

This %html; right a string directly performs @atohtml2’s action.

When Javascript dialog boxes are involved, the @atojavascript ((1.10.6.3)) should
be used in order to display multilingual strings with non-ASCII characters correctly. It
is also available in a short form :

<script language="JavaScript">
alert ("«WRITE LANGUAGE %js;Item is not available;0Objet non disponible;Produkt
ist nicht verfiigbar»")

2.4 Variables, forms, scripts

2.4.1 CGI variables

As previously explained (How .phs pages are interpreted and displayed, , 3 CGI
variables (SqlDB, Sql and xid) are a minima necessary to display a Shop page. They
are completed by two others :

e _MerchantId, which is the identifier for your Merchant ;
e _CustomScriptId, which identifies the add-on, script-wise.

The value of these need not to be known explicitly nor modified, except for Sql, which
rules what .phs script is displayed, and thus subject to be changed.

As scripts are called (2.4.3.2]), other CGI variables can be created and used.

2.4.2 Accessing names and values of CGI variables

For debugging purposes, the names and values of current CGI variables are accessed via
CGINAME and CGIVALUE.

In order to go through all of them, these are used within a «LIST»...«/LISTCGI» loop
environment, in which instructions are executed as many times as there are CGI variables.

For instance, the following codes can be used to list all CGI variables (and their
values) as used in the current script :

<TABLE>
<LIST»
<TR><TD>«CGINAME>» : </TD><TD>«CGIVALUE»</TD></TR>
«/LIST CGI»

</TABLE>

35

2.4.3 CGI variables and HTML forms

Whenever a HTML form is defined in a .phs script, CGI variables need to be recalled as
INPUTS, as written in Code

Code 1 Basic code to create HTML forms.

<FORM METHOD="post" ACTION="/Scripts/sql.exe">
<INPUT TYPE="hidden" NAME="SqlDB" VALUE="«SqlDB»">
<INPUT TYPE="hidden" NAME="Sql" VALUE="«Sql»">
<INPUT TYPE="hidden" NAME="xid" VALUE="«xid»">
<INPUT TYPE="hidden" NAME="_CustomScriptId" VALUE="«_CustomScriptId»">
<INPUT TYPE="hidden" NAME="_MerchantId" VALUE="«_MerchantId»">
[Form contents]
</FORM>

As it can be seen, the value of these is accessed like any other OSL variable, i.e. by
putting them between guillemots.

Recalling the five basic CGI variables, this is the most basic form that can be created :
but other CGI variables can be created within a form, as shown below.

2.4.3.1 Creating CGI variables in a form
Simply enough, a new CGI variable as used in a form can be created as an INPUT :
<INPUT TYPE="hidden" NAME="MyCGIVar" VALUE="«MyCGIVarValue»">
This of course requires that, somewhere inside the form, variable MyCGIVar is actually

assessed a value.
Various types of input (hidden, text, checkbox, radiobutton) can be used.

2.4.3.2 Form calling another script
In Code [} line

<INPUT TYPE="hidden" NAME="Sql" VALUE="«Sql»">

means that, upon generating of this form, the current script (which name always is ac-
cessible via «Sql») was called : thus, upon submit, system remained on the current script.

On the other hand, if we wanted the form to call another script, named for instance
AddStuff.phs script, this line would have been replaced by :

<INPUT TYPE="hidden" NAME="Sql" VALUE="AddOn:AddStuff.phs">

36

It has to be noted that a script is always referred to as this way, LibraryName:ScriptName.phs.

Code [2| then shows what could be done to make appear an Add StUTT | 1,,¢t0n that,
upon click, calls the AddStuff .phs script.

Code 2 A HTML form that calls another script ; other lines are similar to Code [I}

<FORM METHOD="post" ACTION="/Scripts/sql.exe">
<INPUT TYPE="hidden" NAME="Sql" VALUE="AddOn:AddStuff.phs">
<INPUT TYPE="submit" NAME="Add" VALUE="Add stuff">

</FORM>

Inside the called script, any CGI variable as defined within the previous form then
exists, and its value is accessible with the usual <. . .».

2.4.4 Conserving variables from one script to another

There are different ways to branch .phs scripts :

e by means of form submission, which conserves only CGI variables defined therein ;

e by means of an «<INCLUDE. .. », thanks to which any variable as used before exists
in the included script (this is used for instance to initialize new variables before an
included script that will assess values to them, see for instance Information on users

;

e by means of a redirection.

In the latter case, a string containing all basic 5 CGI variables, as well as other
variables you want to pass, must be built in the following fashion :

<META HTTP-EQUIV="refresh" CONTENT="O;
URL=/Scripts/sql.exe?SqlDB=«SqlDB»&Sql=Add0n:RedirScript.phs&xid=«xidy
&_MerchantId=«_MerchantId»&_CustomScriptId=«_CustomScriptId»
&_Varl=«_Varly»&_Var2=«_Var2»"&...>

37

2.4.5 CGI variables and javascript functions

It can happen that the same form provides different possible actions, for instance several
buttons that would call each for a different script. In order to implement this, Code [3]
provides a solution using simple javascript functions ; inside this example form :

e CGI input for Sql does not call for any script ;

o two Modify |ang buttons (for instance) call for two javascript functions
onModify () and onDelete() as shown in Code [4

Code 3 This form contains buttons that, on click, call for javascript functions outside
the form.

<FORM METHOD="post" ACTION="/Scripts/sql.exe">
;iI;IPUT TYPE="hidden" NAME="Sql" VALUE="">
;iI;IPUT TYPE="button" VALUE="Modify" onClick="onModify()">
;iI;IPUT TYPE="button" VALUE="Delete" onClick="onDelete()">

</FORM>

The onModify () and onDelete() functions then simply consist in assigning the right
script name (AddOn:Modify.phs or AddOn:Delete.phs) to CGI variable Sql.

2.4.6 Incorporating other files

In order to make the layout of a .phs script less cluttered, the PublisherHome can
be used to store various files such as javascript files, custom style sheets... This is done
as shown in Code [5] by using the predefined variable «#SQLWWWHOME#>»> which stores the
PublisherHome root.

2.5 Setting aimed user rights for the add-on

@For general information about user rights, please check User right
basics in the Annex of Blue Chameleon’s Extended or Full Documentation.

User rights’ purpose is that to restrict certain actions that, when done carelessly, could
harm the data the add-on deals with.

38

Code 4 How javascript functions for calling a .phs script are made .

<script language="JavaScript">

function onModify (){
document.edit.Sql.value="Add0On:Modify.phs";
document.edit.submit();

¥

function onDelete(){
Cfrm_Box=confirm("«WRITE LANGUAGE Are you sure;Etes-vous sfir;Sind Sie
sicher»?");
if (Cfrm_Box==true){
document.edit.Sql.value="AddOn:Delete.phs";
document.edit.submit () ;
}
}

</script>

Code 5 Including files "processStuff. js" and "MyOwnStyle.css" from their respective
locations js/ and css/ on PublisherHome root.

<script type="text/javascript" src="«#SQLWWWHOME#s>/js/processStuff.js">
</script>

<link rel="stylesheet" href="«#SQLWWWHOME#»/css/MyOwnStyle.css"
type="text/css" media="screen"/>

39

2.5.1 Getting the current (Menu Script) user rights inside a script

During the insertion of the add-on, dedicated user rights for it ("Menu script user rights")
are indeed created (2.2.3.2) : they may rule in a simple what can or cannot be done inside
the add-on.

For a .phs script to know what these current rights for your add-on are, it must
INCLUDE the ossbo:0SSCustomUserRights.phs script as shown in Code [6] Indeed, it
uses as a parameter the CGI variable _CustomScriptId that identifies your add-
on menu script-wise and stores the right values (strings) into two previously initialized
variables, one for the owner’s user rights and the other for "All".

Code 6 This code stores in _OwnerUserRights and _UserRights the values of current
Menu Script user rights for the add-on.

«VAR NEW _OwnerUserRights=""»
«VAR NEW _UserRights=""»

«INCLUDE ossbo:0SSCustomUserRights.phs;_MerchantId=«_MerchantIdy;
_CustomScriptId=«_CustomScriptId»»

This code must be placed at the top of any script in which the values of menu script
user rights are going to be needed ; this is not necessary if _OwnerUserRights and
_UserRights are carried around from script to script as CGI variables.

2.5.1.1 User rights values

With Code [6]included at the beginning of a script, add-on user rights for "All" have been
recuperated and can be accessed via _UserRights[0], which stores a value that increases
as user’s rights become more extended, according to the following :

’ Value of _UserRights[0] \ Corresponding user right ‘

48 None

49 View

50 Modify

51 Create/Modify

52 Delete/Create/Modify
88 Unrestricted

(These values correspond in fact to the ASCII value of characters 0, 1, 2, 3, 4 and X.)

For instance, for a user that has been set with Create/Modify rights for the add-on
(at her/his Modify User Page) estimating _UserRights[0] will return 51.

40

This now can be used in practice to restrict the access to the add-on’s features, as
explained below.

2.5.2 Fine-tuning the access to add-on’s features

Inside your add-on, data might have to be modified, other data to be created while delet-
ing some might also come around ; some of these actions will never be performed by
certain users.

2.5.2.1 Access to elements of a script

Whenever an element of an add-on’s script shall not appear unless user rights are sufficient
enough to allow it, it can be put between «IF»..«ENDIF» tags, with a test done on
_UserRights[0] : for instance, the following code

«IF _UserRights[0]>51»
[Instructions]
<ENDIF»

will process [Instructions] only if user has at least Delete/Create/Modify menu
script user rights. It can therefore be used for instance (taking the example as used in
for javascript functions) to hide data-deleting features as shown on Code [7]

Thanks to this way of testing for user rights, the following is achieved :

e the button only appears for users who have at least Delete/Create/Modify
rights. Therefore, this call to the onDelete () function is de facto disabled for users
who have insufficient rights ;

e the fact that the onDelete() function is also itself protected in a similar way is
a further protection ensuring that, if ever "unprotected" calls to it are done, they
will abort.

2.5.2.2 Access to a whole script

As scripts multiply, it becomes sometimes uneasy to tell if a particular script, access to
which was supposed to be protected, is indeed accessed under sufficient user rights.

To ensure that no "trespass" will happen, as well as to simply render a script restricted
under other circumstances, the command EXIT STOP can be used to stop the execution of
the script. For instance, the Code , placed at the beginning of the script (after user rights
have been recuperated), tests if user has at least Modify rights and aborts the script if
not, displaying the "You don’t have the necessary rights to access this function." message.

41

Code 7 These elements are accessed only if _UserRights[0] corresponds to at least
Delete /Create/Modity.

<FORM METHOD="post" ACTION="/Scripts/sql.exe">

«IF _UserRights[0]>51»
<INPUT TYPE="button" VALUE="Delete" onClick="onDelete()">
«ENDIF»

</FORM>

<script language="JavaScript">

«IF _UserRights[0]>51»
function onDelete(){

}
«ENDIF>»

</script>

Code 8 This restricts the access to the rest of the script to any user who has insufficient
rights.

[Code [6]]

«*Is user allowed to go further 7x*»

«IF _UserRights[0]<50»
«INCLUDE ossbo:MessageAccessDenied.phs#Message»
«EXIT STOP»

«ENDIF>»

42

2.5.3 Making custom library user rights for your add-on

In the above, the user rights that were recuperated as described in were the "Menu
Script User Rights" : a single value for each user was obtained. As an add-on expands,
it may eventually nonetheless require more than one value.

Blue Chameleon provides the possibility to create new - library - user rights for your
add-on. In order to do this, follow this guideline :

1. open two files called ossUserConfig.phs and ossUserModify.phs ;
2. paste the Codes[9 and [I1] ;
3. fill below in your custom user rights as shown as an example in Code [10];

4. compile the library.

2.5.3.1 Building your own ossUserConfig.phs script

This script’s aim is to make appear, on the Modify User Page, your own custom user
rights.

Code 9 The preamble to put in ossUserConfig.phs.

«IF _Userld == -1»

«VAR NEW azOwnerUserRights = "00000000"»

«VAR NEW azUserRights = "00000000"»
«ELSE»

«SQLEXEC STRING azUserRights = select azUserRights from
0SSCUSTOMLIBRARYUSERRIGHTS where idUser = «_UserId» AND idLibrary =
«_LibraryIds»

«SQLEXEC STRING azOwnerUserRights = select azOwnerUserRights from
0SSCUSTOMLIBRARYUSERRIGHTS where idUser = «_UserId» AND idLibrary =
«_LibraryId»»

«ENDIF>»

In Code[9] two strings of rights (for "All" and "Owner") are selected for the current
user and the current library (your add-on) : they correspond to the custom rights that
are going to be defined displayed further down, in Code [I0}

There :

e a general title is given ("My AddOn’s Custom User Rights") ;

e a first custom right is defined (here, "Gizmo Management"), under which are defined
two list-boxes :

43

— one giving the usual values of user rights (None, View,... but you can even
define what you wish), and the choice is stored in
_OwnerUserRight«_LibraryIds»_O : this will be the user right value assigned
to right "Gizmo Management" concerning Owner ;

— a similar one, this time defining in _UserRight«_LibraryIds_O the user right
value assigned to right "Gizmo Management" concerning All.

e asecond custom right ("Widget Handling") is defined, similarly as for "Gizmo Man-
agement", this time with user values stored in _OwnerUserRight«_LibraryIds_1
and _UserRight«_LibraryIds_1 ;

e and so on, incrementing the integer as put after _ [Owner]UserRight«_LibraryIds.. ..

2.5.3.2 Building the corresponding ossUserModify.phs script

While the previous script made the various new right elements appear on the Modify User
Page, a script whose code is detailed at [11]is still necessary in order to validate changes.

There :

e a first SQL command tests if the custom rights pertaining to your library have been
inserted into Blue Chameleon’s 0SSCUSTOMLIBRARYUSERRIGHTS ;

e a SQL command places into this table the values of the Owner user rights for each
group of rights : «_OwnerUserRight«_LibraryIds_O»«_OwnerUserRight«_LibraryIds_1y,
that correspond respectively to "Gizmo Management" and "Widget Handling".
This makes two values, and the string is thus completed by six zeros, as, in the
preamble of ossUserConfig.phs, the variable azOwnerUserRights was defined
with eight zeros. A similar thing is done for "All" user rights with «_UserRight«_LibraryIds. ..

)

e a last SQL command sets the rights themselves in the same way.

2.5.3.3 These two scripts in force

Once the ossUserConfig.phs and ossUserModify.phs files have been integrated and
compiled with the library, these new user rights finally appear at the bottom of the
Modify User Page, as featured in Fig2.10]: they can now be set and used in your scripts,
as cleared up below.

2.5.3.4 Incorporating your add-on custom user rights in scripts

As shown in Code [I2] below, calling script ossbo:0SSLibraryUserRight.phs stores into
strings _OwnerUserRights and _GroupUserRights (which have to be initialized before)
the right vectors. The input parameters for the script, apart from the usual _MerchantId,
are several identifiers :

44

Code 10 An example of a ossUserConfig.phs file : defining various custom rights for
AddOn, building for each list-boxes with multiple user right choices, for "Owner" and for
"All” .

[Code [9]]

<tr>
<td colspan=3><i>My AddOn’s Custom User Rights</i></td>
</tr>

<tr>
<td>Gizmo Management</td>
<td>

<select name="_OwnerUserRight«_LibraryId»_0">
<option value="0" «IF azOwnerUserRights[0]==48»selected<ENDIF»>None</option>
<option value="1" «IF azOwnerUserRights[0]==49»selected«ENDIF»>View</option>
<option value="2" «IF azOwnerUserRights[0]==50»selected«ENDIF»>Modify</option>
<option value="3" «IF azOwnerUserRights[0]==51»selected«ENDIF»>Create/Modify</option>
<option value="4" «IF azOwnerUserRights[0]==52»selected«ENDIF»>Delete/Create/Modify</option>
<option value="X" «IF azOwnerUserRights[0]==88»selected«ENDIF»>Unrestricted</option>

</select>
</td>
<td>

<select name="_UserRight«_LibraryId»_0">
<option value="0" «IF azUserRights[0]==48»selected«ENDIF»>None</option>
[...]
<option value="X" «IF azOwnerUserRights[0]==88»selected«ENDIF»>Unrestricted</option>

</select>
<td>
</tr>

<tr>
<td>Widget Handling</td>
<td>

<select name="_OwnerUserRight«_LibraryId»_1">
[...1

</select>
</td>
<td>

<select name="_UserRight«_LibraryId»_1">
[...]

</select>
</td>
</tr>

45

Code 11 The ossUserModify.phs file corresponding to the ossUserConfig.phs as
previously defined.

«SQLEXEC INT existSqlLine = select count(*) from
0SSCUSTOMLIBRARYUSERRIGHTS where idMerchant=«_MerchantId» AND
idLibrary=«_LibraryId» AND idUser=«_UserId»»

«IF existSqlLine==0»

«SQL INSERT INTO OSSCUSTOMLIBRARYUSERRIGHTS
(idMerchant,idLibrary, idUser,az0wnerUserRights,azUserRights)
VALUES (« _MerchantId»,«_LibraryId»,«_UserIdy,’«_OwnerUserRight«_LibraryIds_0»
«_OwnerUserRight«_LibraryId»_1»000000’,’«_UserRight«_LibraryId»_O0»
«_UserRight«_LibraryId»_1»0000007)>»
<ENDIF»

«SQL update OSSCUSTOMLIBRARYUSERRIGHTS set
az0wnerUserRights=’«_0OwnerUserRight«_LibraryId»_O»«_OwnerUserRight«_LibraryId»_1»
000000’ ,azUserRights=’«_UserRight«_LibraryId»_O»«_UserRight«_LibraryId»_1»000000’
where idMerchant=«_MerchantId» AND idLibrary=«_LibraryId» AND

idUser=«_UserIds»

BN / sers / Users / Tom |

My AddOn's Custormn User Rights
Gizmo Management | Delete/Create/Modifyl 2 | | Delete/Create/Modifyl 2 |
widget Handling | Delete/Create/Modifyl 2 | | Delete/Create/Modifyl 2 |

Figure 2.10: The custom rights now appear on the Modify User Page.
e _LibraryId, which value «_CustomLibraryIdy corresponds to the signature (2.3.1.1))
of your add-on (in the current example,1003) ;
e _UserId, which is set to the current user (#SQLUSERID#) ;

e user’s _UserGroupld, as obtained via script ossbo:0SSUserInfo.phs (2.6.1.2).

Once initialized, in this current example, the _OwnerUserRights string will be XX000000
for a user that has unrestricted owner rights for "Gizmo Management" and "Widget
Handling". The former is then accessed via _OwnerUserRights[0] and the latter via
_OwnerUserRights[1].

The following code shows for instance how a | Gizmo Management | button can be
hidden from users who do not have at least View rights for it :

46

Code 12 Getting the custom user rights of an add-on.

«VAR NEW _UserGroupId=""»
<« INCLUDE
ossbo:0SSUserInfo.phs;_MerchantId=«_MerchantlIdy; _UserId=«#SOLUSERID#»»

«VAR NEW _OwnerUserRights=""»

«VAR NEW _GroupUserRights=""»

«INCLUDE ossbo:0SSLibraryUserRight.phs;_MerchantId=«_MerchantIdy;
_LibraryId=1003; _UserId=«#SQLUSERID#»; UserGroupIld=«_UserGroupId»»

«IF _OwnerUserRights[0]>=49 && _GroupUserRights[0]>=49>»
<INPUT TYPE="button" VALUE="Gizmo Management"

onClick="onManageGizmo () ">

<ENDIF»

=
=

= In order to call ossbo:0SSLibraryUserRight.phs only once (at the en-
try script), _OwnerUserRights and _GroupUserRights can be conveniently
transmitted from script to script as CGI variables :

.. .&_OwnerUserRights=«_0OwnerUserRights»&_GroupUserRights=«_GroupUserRights>. ..

2.6 Importing information on Shop data

In order to get information related to your Shop data such as users, clients, orders, in-
voices... Blue Chameleon’s main library ossbo.phs has been equipped with a wide range
of scripts aimed at fetching any kind of information as entered in other places.

Whatever you want to get, those information scripts are used in the same way :

e first, initialize output variables (only those you want to use) ;

e then, call script, using if applicable input parameters.

According to the type of the output variable to fetch, numerical value or string, it is
either initialized to 0 (e.g. «VAR NEW _BillTotalPrice=0») or to the null string (e.g.
«VAR NEW _ClientFullName="").

2.6.1 Importing user and user group information

Through the course of an add-on’s development, it might come in necessary to implement
functionalities that are user- or user group-dependent.
The following guideline then shows how to bring in those data.

47

2.6.1.1 List of users

The ossbo:0SSUserList.phs scripts can be used to return a formatted list of users.

| ossbo:0SSUserList.phs |

Input Variable Type | Corresponding data

_MerchantId Integer | Merchant identifier

_UserCustomScriptId | Integer | Custom script identifier to test access rights [Optionall

_UserMinUserRights | Integer | User rights required at least [Optional]

_UserGroupId Integer | User group identifier

(not existing=all users, -1=users in a user group)

’ Return value : string <username>=<id>,<username>=<id>, ... ‘

2.6.1.1.1 Examples of use

The following returns a list of all users :

«VAR NEW _UserList=""»
«INCLUDE _UserList=ossbo:088UserList.phs;_MerchantId=1 »

Returned variable _UserList is then formatted as "<username>=<id>, <username>=<id>, ...

(for instance "admin=1,Dick=4,Harry=7,James=6,...").

This other example features all possible optional input parameters that this script
can be called with :

«VAR NEW _UserList=""»

«INCLUDE _UserList=ossbo:0SSUserList.phs;_MerchantId=«_MerchantId»»;
_UserCustomScriptId=«_CustomScriptId»;

_UserMinUserRights= 49; _UserGrouplId=5»

There :

e the identifier of the custom script is passed on ;

e the 'View’ user right (49) is passed on to select users that have at least this menu
script user right on the add-on ;

e the identifier for the user group "Accounting" (5) is passed to select users belonging
to this group.

Consequently, the _UserList as obtained by this call will contains only the members
of the "Accounting" user group that have at least view rights on the add-on.

48

2.6.1.2 Information on users

A call to script ossbo:0SSUserInfo.phs, with only parameters _MerchantId and _UserId,
allows to access a multitude of user-related data as filled on the Create/Modify User Page.

| ossbo:0SSUserInfo.phs |

Input Variable Type | Corresponding data
_MerchantId Integer | Merchant identifier

_UserlId Integer | User identifier

Output Variable | Type | Corresponding data
_UserName String | User name

_UserGroupId Integer | Default user group identifier
_UserGroup String | Default user group label
_UserGroupList String | User group list id:label;id:label. ..
_UserGroupIdList | String | User group identifier list id;id. . .
_UserRealname String | User name

_UserFirstName String | User first name

_UserTel String | User phone number

_UserMobile String | User mobile number

_UserEMail String | User email address
_UserNotification | String | User notification

| Return value : _Status (1 if user was found, 0 if not)

2.6.1.2.1 Example of use

The following bit of script stores the current user’s first name and last name as string
_CurrFullName and displays it :

«VAR NEW _UserRealName=""»

«VAR NEW _UserFirstName=""»

«INCLUDE ossbo:0SSUserInfo.phs;_MerchantId=«_MerchantIdy;_UserId=«#SQLUSERID#»»
«VAR NEW _CurrFullName=_UserFirstName+" "+_UserRealNamey

«WRITE LANGUAGE Your are;Vous étes;Sie sindy «_CurrFullNamey»

2.6.1.3 List of user groups

The ossbo:0SSUserGroupList.phs script returns a formatted list of user groups.

| ossbo:0SSUserGroupList.phs |

Input Variable | Type | Corresponding data
_MerchantId Integer | Merchant identifier

’ Return value : string <id>:<label>:<prefs>;<id>:<label>:<prefs>... ‘

2.6.1.3.1 Example of use
This call

49

«VAR NEW _UserGroupList=""»
«INCLUDE
_UserGroupList=ossbo:0SSUserGroupList.phs;_MerchantId=«_MerchantId»»

stores into _UserGroupList, as an example, "5:Accounting:00000000;1: Administrator:10000000;...".
The <prefs> string consists in a 8-digit boolean string coding for user group preferences
; as of now, only the first digit is used meaning if group is open (0) or closed (1).

2.6.1.4 Information on user groups

Calling the script ossbo:0SSUserGroupInfo.phs allows to obtain the label, preferences
and default user identifier of user group as identified by _UserGroupId.

| ossbo:0SSUserGroupInfo.phs |

Input Variable Type | Corresponding data
_MerchantId Integer | Merchant identifier
_UserGroupId Integer | User group identifier
_DefaultUserId Integer | Default user identifier

Output Variable | Type | Corresponding data
_UserGroup String | User group label
_UserGroupPrefs | String | User group preferences
Return value : _Status (1 if group was found, 0 if not)

2.6.1.4.1 Example of use

For instance :

«VAR NEW _UserGroup=""»

«VAR NEW _UserGroupPrefs=""»

«VAR NEW _DefaultUserId=0»

«INCLUDE

0ssbo:0SSUserGroupInfo.phs; _MerchantId=«_MerchantId»;_UserGroupld=5»

would store the name of the user group as well as its preferences (see Getting list of
user groups, Example of use above) in the initialized variables for user group number 5.

2.6.2 Information on Merchant

The data entered at the Merchant General Information Page can be retrieved through
the ossbo:0SSMerchantInfo.phs script.

20

| ossbo:0SSMerchantInfo.phs |

Input Variable Type | Corresponding data
_MerchantId Integer | Merchant identifier
_LanguageId Integer | Language identifier (]2.3.3[) [Optional]
Output Variable Type | Corresponding data
_MerchantName String | Merchant name
_MerchantAddressl String | Merchant address
_MerchantAddress2 String

_MerchantAddress3 String

_MerchantPCode String | Merchant postcode
_MerchantCity String | Merchant city
_MerchantCountryId Integer | Merchant country identifier
_MerchantCountry String | Merchant country name
_MerchantPhone String | Merchant phone number
_MerchantFax String | Merchant fax number
_MerchantEmail String | Merchant email
_MerchantPrefs String | Merchant preferences string
_MerchantUserGroupId | Integer | Merchant user group identifier

| Return value : _Status (1 if merchant info was correctly fetched, 0 if not) |

2.6.2.1 Example of use

An example on the purpose of recuperating some data about your merchant is cleared
up at Advanced developing : using Blue Chameleon’s mail gate (2.9)).

2.6.3 Information on clients

The script ossbo:0SSClientInfo.phs aims at getting all client information as entered /modified
at the Add/Modify Client Page.

o1

|

ossbo:0SSClientInfo.phs

Input Variable Type | Corresponding data
_MerchantId Integer | Merchant identifier
_Languageld Integer | Language identifier (2.3.3) [Optionall
_ClientId Integer | Client identifier
_ClientUsername String | Client username [Optionall
_NoWalletInfo Integer | Flag to ignore wallet (0-1) [Optionall
Output Variable Type | Corresponding data
_ClientType Integer | Client type

_ClientTitle String | Client title

_ClientCompany String | Client company name
_ClientFName String | Client first name
_ClientName String | Client name
_ClientFullName String | Client full name (name, first name, company)
_ClientAddressl1 String | Client address
_ClientAddress2 String

_ClientAddress3 String

_ClientPCode String | Client postcode

_ClientCity String | Client city
_ClientCountryId Integer | Client country identifier
_ClientCountry String | Client country

_ClientPhone String | Client phone number
_ClientOffice String | Client office phone number
_ClientMobile String | Client mobile phone number
_ClientFax String | Client fax number
_ClientEmail String | Client email address
_ClientUsername String | Client username
_ClientPassword String | Client password
_ClientLanguage String | Client language
_ClientDelivery String | Client delivery
_ClientDeliveryData | String | Client delivery data
_ClientBilling String | Client billing
_ClientPayment String | Client payment
_ClientPaymentData String | Client payment data
_ClientPaymentStatus | String | Client payment status label
_ClientSLA String | Client service level agreement

| Return value : _Status (1 if client was found, 0 if not)

2.6.3.1 Example of use

The following displays a table of clients’ full names and phone numbers :

<TABLE>
<TR>

<TD>Name</TD><TD>Number</TD>

</TR>

52

«SQLREPEAT»

«VAR NEW _ClientName=""»

«VAR NEW _ClientPhone=""»

«INCLUDE _Status=ossbo:0SSClientInfo.phs;_MerchantId=1;_ClientId=«#SQLREPEAT#»>»
«IF _Status==1»

<TR>
<TD>«_ClientName»</TD><TD>«_ClientPhone»</TD>
</TR>

<ENDIF>»

«/SQLREPEAT 0;1000»

</TABLE>

2.6.4 Information on subscriptions

The script ossbo:0SSSubscriptionInfo.phs returns various information on subscrip-
tions, and also on the related client.

93

| ossbo:0SSSubscriptionInfo.phs

Input Variable Type | Corresponding data
_MerchantId Integer | Merchant identifier
_LanguageId Integer | Language identifier (2.3.3) [Optionall
_SubscriptionId Integer | Subscription identifier
Output Variable Type | Corresponding data
_SubscriptionParentId Integer | Parent subscription identifier
_SubscriptionChildList String | List of subscription children identifiers
_SubscriptionPrevId Integer | Previous subscription identifier
_SubscriptionNextId Integer | Next subscription identifier
_SubscriptionName String | Subscription name
_SubscriptionStatus String | Subscription status (<iStatus>=<label>)
_SubscriptionCustomStatus | String | Subscription custom status (<id>=<label>)
_SubscriptionStartDate Integer | Subscription start date (cdate)
_SubscriptionEndDate Integer | Subscription end date (cdate)
_ArtId Integer | Article identifier
_ArtPrice Integer | Article price
_ArtBasePrice Integer | Article base price
_ArtFollowUpPrice Integer | Article follow-up price
_ArtUnits Integer | Article units
_ArtUnitsType Integer | Article units type
_ArtUnitsPrice Integer | Article units price
_ArtLibraryData String | Article external library data
_OrderNumber String | Order reference number
_OrderDate Integer | Order date as ctime
_OrderSalesman String | Order salesman identifier
_OrderPayment String | Order payment method
_OrderBilling String | Order billing method
_OrderTicketId Integer | Order ticket identifier
_ClientId String | Client identifier (Param=<id>)

@ All ossbo:0SSClientInfo.phs (]2.6.3[) output variables

Return value : _Status (1 if subscription was found, 0 if not)

2.6.4.1 Example of use

Part Developing subscription (configure, display) custom scripts : an example (2.7.2.2)
shows in detail how ossbo:0SSSubscriptionInfo.phs can be useful.

2.6.5 Information on orders

The script ossbo:0SS0rderInfo.phs returns various information on orders, and also on
the related client.

o4

| ossbo:0SS0rderInfo.phs |

Input Variable Type | Corresponding data
_MerchantId Integer | Merchant identifier
_Languageld Integer | Language identifier (2.3.3) [Optionall
_OrderId Integer | Order identifier
Output Variable | Type | Corresponding data
_OrderQwner Integer | Order owner identifier
_OrderNumber String | Order reference number
_OrderDate Integer | Order date as ctime
_OrderSalesman String | Order salesperson identifier
_OrderPayment Integer | Order payment method
_OrderBilling Integer | Order billing method

@ All ossbo:08SClientInfo.phs (]2.6.3[) output variables

’ Return value : _Status (1 if client and order were found, 0 if not) ‘

2.6.5.1 Example of use

The following outputs a table of order numbers, salespersons and client names of orders
done in 2010.

<TABLE>

<TR>

<TD>0rder</TD><TD>Salesperson<TD>Client</TD>

</TR>

«SQLREPEAT>»

«VAR NEW _OrderNumber=""»

«VAR NEW _OrderSalesman=""»

«VAR NEW _ClientName=""»

«INCLUDE ossbo:0SSOrderInfo.phs;_MerchantId=1;_0OrderId=«#SQLREPEAT#»»
«IF @strstrsearch(_OrderNumber;"2010")==0»

<TR>
<TD>«_0rderNumber»</TD><TD>«_0OrderSalesman»</TD><TD>«_ClientName»</TD>
</TR>

<ENDIF>»

«/SQLREPEAT 0;10000»

</TABLE>

2.6.6 Information on invoices

The script ossbo:0SSBillInfo.phs returns various (mostly numerical) information on
invoices.

95

| ossbo:0SSBillInfo.phs
Input Variable Type | Corresponding data

_MerchantId Integer | Merchant identifier

_Billld Integer | Invoice identifier

Output Variable | Type | Corresponding data

_BillOrderId Integer | Invoice order identifier

_BillUserId Integer | Invoice user identifier that registered the invoice
_BillClientId Integer | Invoice client identifier

_BillReference String | Invoice reference

_BillCurrencyId | Integer | Invoice currency identifier

_BillDate Integer | Invoice date (cday)

_BillValueDate | Integer | Invoice value date (cday)
_BillTotalPrice | Integer | Invoice total price

_BillTotalTax Integer | Invoice total tax
_BillOpenPrice Integer | Invoice total open price
_BillStatus Integer | Invoice status

(0O=editable, 1=sent, 2=reminder 1, 3=reminder 2,
4=reminder 3, 5=reminder 4, 100=finished)

_BillPaid Integer | Invoice paid status (O=unpaid, 1=paid)

_BillExport Integer | Invoice export status

(0=not exported, 1=exported, 2=exported and confirmed)

| Return value : _Status (1 if invoice was found, 0 if not) |

2.6.6.1 Example of use

The following shows a table featuring already-paid invoices over a certain amount (_MyAmount)
as recorded in 2010, giving also the user’s names that recorded them :

<TABLE>

<TR>

<TD>Reference</TD><TD>Amount</TD><TD>Recorded by</TD>

</TR>

<«SQLREPEAT>»

«VAR NEW _BillReference=""»

«VAR NEW _BillTotalPrice=0»

«VAR NEW _BillUserId=0»

«VAR NEW _BillPaid=0»

«INCLUDE _Status=o0ssbo:08SBilllnfo.phs;_MerchantId=1;_BillId=«#SQLREPEAT#»>»
«IF _Status==1 && _BillPaid==1 && _BillTotalPrice>_MyAmount»

«VAR NEW _UserRealname=""»

«INCLUDE ossbo:0SSUserInfo.phs;_MerchantId=«_MerchantIdy; _UserId=«_BillUserId»
<TR>
<TD>«_BillReference»</TD><TD>«_BillTotalPrice»</TD><TD>«_UserRealname»</TD>
</TR>

<ENDIF>»

«/SQLREPEAT 0;10000»

o6

</TABLE>

2.7 Advanced developing : custom scripts

The previous showed how information related to Blue Chameleon objects could be re-
trieved. Now, conversely, when dealing with articles, clients, subscriptions... in the
regular shop, you might want to, in this very environment, link to data pertaining to
your add-on.

This can be achieved thanks to custom scripts, where a particular, dedicated script
belonging to your add-on is declared in the Shop environment to be actionable there. For
instance, while on a subscription search, buttons for each subscription may be available
to display further data.

2.7.1 Adding a custom script

::;f‘%t;::
&m‘l& User rights for custom script management can be set up either at the Modify
User Page or the User Right Page under the element

Script management

No matter what its context use will be, a custom script is created as shown in Fig

m[Personalization ;' Custom scripts][Add new custom script] :

Add custom script

Script: ["Display subscription" Script | ¢]
Library: | AddOn - AddOn |+
MName: [‘v’iew License

Button text: [‘v’iew licence;Vair license; Lizenz anzeigen

Script file: [AUdOnZViEWLiCEHCE.phS

Figure 2.11: The Add New Menu Script Page.

On this page, the following are chosen :
e a use, through the ’Script:” menu ;
e the library it belongs to (i.e. your add-on) ;

e a name under which it appears on the page where this script is selected ;

57

e the text of the button that will launch it ;

e finally, the script file itself, always preceeded by the add-on name.

Once created, the rights for the custom script must be set on the Modify User Page

(Figj2.12).

EEEEN/ vsers / sers / 1om |

Custorn script user rights:

Update License | Delete/Create/Modify| 4 | | Delete/Create/Modify & |
Events | Delete/Create/Modify| 4 | | Delete/Create/Modify 4 |
View License | Delete/Create/Modify| 4 | | Delete/Create/Modify 4 |

ey

Figure 2.12: All defined custom scripts are assessed rights so that the relevant
buttons (if applicable) might be displayed.

2.7.2 Subscription-related custom scripts

They are of different types, as chosen from the ’Script:” menu on the Add New Menu
Script Page as illustrated above :

e "Configure subscription" ;
e "Display subscription" ;
e "Display subscription consumption" ;

e "Event on subscription".

The first three aim at displaying relevant buttons for each subscription after a sub-
Existing subscriptions or[Search subscriptions])

scription search (through either , while
the latter aims at triggering dedicated actions when subscription status is modified (ac-
tivated, suspended,...).

2.7.2.1 Attaching scripts to a subscription article - Effects

For a particular subscription article, defining (if desired) which custom scripts are trig-
gered is done while at the Modify Subscription Page (Fig, accessed through the
eponymous button as found on the Article Management Page (see Article Management
chapter, Managing articles).

The ’Configuration script’, "View script’, 'Consumption script’ and ’Event script’
menus respectively feature defined custom scripts of the types as listed above. Concerning
the "Event script’, the checkboxes respectively rule :

o8

[Article Management Page for "At-Home Help, basic"] | Modify subscription | .

Backoffice Frontoffice
Configuration script: |Update License| 2 | |Update License| % |
\iew script: \view License| 2 | |view License| % |

Event script:

[l send client identification to event script on begin/activation
fdeactivation/end

Con't send confirmation on activation/deactivation

oy &

Figure 2.13: Picking previously-defined subscription custom scripts to be
executed on this subscription article.

e if variables _OssUserName and _OssUserPassword (related client’s user name and
password) will be available in the "Event script’ ;

e whether an email is automatically sent to client on activating or de-activating. In
the former case (with email sent), variable _iCommand (see table below) will be
respectively 7 or 8, while in the latter 5 or 6.

Fig then shows the new buttons that appear for a particular subscription which
article was assessed "Configure subscription" and "Display subscription" scripts.

[Subscription search] :

1 subscriptions found

Subscription Order Client Status Start End
At-Home Help, basic 2010091401001 Smith John ordered | Update licence || View licence |

Figure 2.14: These buttons now appear for any "At-Home Help" subscrip-
tion.

Then, in the scripts as called by the buttons or triggered by a subscription status
change, several variables exist :

99

Custom script type Existing variable | Corresponding data

All _MerchantId Merchant identifier
_CustomScriptId | Custom script identifier
Configure subscription _SubscriptionId | Subscription identifier

Display subscription
Display subscription consumption

Event on subscription _iOssIdentifier | Subscription identifier

_iCommand New subscription status :
1=Started

2=Ended

b=Activated (or re-activated)
6—=Halted

7=Activated (or re-activated)
- with email sent

8=Halted - with email sent
9=Subscription dates modified :
_iStartDate - new start date

_iEndDate - new end date
10=Consumption updated

_OssUserName Client user name
_OssPassword Client password

2.7.2.2 Developing subscription custom scripts : "Display" example

The following codes show an example of what can be done for a "Display subscription”
custom script named AddOn:ViewLicense.phs. Inside the add-on, a table ADDON_LICENCE
had been previously created with the fields idSubscription (int), iEndDate (int)
and azLicense varchar(128). This code basically displays these three values for the

clicked-on (via button) subscription.

In Code[13] first, custom script user rights related to this script are loaded and further
access is blocked if user does not have at least "View’ user rights (cf. Fig2.12). Then, the
correct variables to store the subscription end date and client name to are initialized and
set by a call to script ossbo:0SSSubscriptionInfo.phs (2.6.4]).

Finally, last part of AddOn:ViewLicense.phs (Code fetches the "license" corre-
sponding to the subscription and displays a table where subscription identifier, end date
and license are shown. Concerning end date, a small test is done to check if subscription

has no specified end (in which case Blue Chameleon had stored corresponding cdate as
99999), otherwise formats it in DD/MM/YYYY.

Figl2.15| shows this example "Display subscription" script’s final result.
For this page to actually display information, the ADDON_LICENSE line as used here

60

Code 13 AddOn:ViewLicense.phs : rights, initializing variables

«VAR NEW _OwnerUserRights=""»

«VAR NEW _UserRights=""»

«INCLUDE
ossbo:0SSCustomUserRights.phs;_MerchantId=«_MerchantId»;_CustomScriptId=«_CustomScriptId»»

«*Is user allowed to do this 7*»

«IF _UserRights[0]<49»
«INCLUDE ossbo:MessageAccessDenied.phs#Message»
<EXIT STOP»

«ENDIF»

«VAR NEW _SubscriptionEndDate=0»

«VAR NEW _ClientName=""»

«INCLUDE
ossbo:0SSSubscriptionInfo.phs;_MerchantId=«_MerchantId»;_SubscriptionId=«_SubscriptionId»»

Code 14 AddOn:ViewLicense.phs [continued and finished| : display of results

«SQLEXEC STRING _License=SELECT azLicense FROM ADDON_LICENSE WHERE
idSubscription=«_SubscriptionId»»

<p>
<table>
<tr><td>Subscription identifier :</td><td>«_SubscriptionId»</td></tr>
<tr><td>Client :</td><td>«_ClientName»</td></tr>
<tr>
<td>End date :</td>
«IF _SubscriptionEndDate=99999»«*not specified*»
<td>Not specified</td>
<ELSE»
<td>«=@daytimeday(_SubscriptionEndDate)»/
«=@daytimemonth(_SubscriptionEndDate)»/
«=@daytimeyear (_SubscriptionEndDate)»</td>
<«ENDIF»
</tr>
<tr><td>License :</td><td>«_License»</td></tr></table>
<p>

61

At-Home Help. basic 2010091401001 :

View License

Subscription identifier : 28

Client : Smith John
End date : Mot specified
License : SMITHIOHNT32

Subscription Management || View subscriptions || Continue with this subscription |

Figure 2.15: The rendering of AddOn:ViewLicense.phs. It is to remember
that the title of the page is not set in the script itself, but by the 'Name:’ as
entered while adding this custom script (Figj2.11)).

had to be inserted in the first place : this can be done automatically by using a "Event
on subscription" custom script, as cleared up below.

2.7.2.3 Subscription events : an example

An "Event on subscription" script, or more precisely one of its parts, is automatically
launched when a particular subscription is activated, suspended, modified date-wise,...

The general structure of such a custom script, called in this example AddOn:Events . phs
is better done following the guideline as shown in Code [I5] Basically, already-existing
variable _iCommand is tested so that specific commands (or even a call to an add-on
script) are performed according to how subscription has been acted on.

In the example of the ADDON_LICENCE table, the AddOn:Events.phs can be equipped
with commands that insert a new line in this table when subscription is activated.

In the SQL transaction as featured in Code[16], a test is done on whether this subscrip-
tion is already in the ADDON_LICENSE table (so that it may not be inserted another time
in the case of a re-activating) ; if not :

e a "license" string is composed by concatenating client’s name (put into capitals and
simplified thanks to @tocompare function) with a random number, casted into a
string ;

e this element is inserted into the table along with subscription identifier and end
date.

It is to note that in this "Event on subscription" context, subscription is identifier by
_i0ssIdentifier.

At the end, variable _Success records the success or failure of the transaction, and
result is displayed on the screen, as featured in Figl2.16]

62

Code 15 AddOn:Events.phs : a general template.

«VAR NEW _OwnerUserRights=""»

«VAR NEW _UserRights=""»

«INCLUDE
ossbo:0SSCustomUserRights.phs;_MerchantId=«_MerchantId»;_CustomScriptId=«_CustomScriptId»»

«IF _iCommand==1»

[Do stuff associated with this subscription’s start]
«ELSEIF _iCommand==2»

[Do stuff associated with this subscription’s end]
«ELSEIF _iCommand==5»

[Do stuff associated with this subscription’s activating or re-activating]
«ELSEIF _iCommand==6»

[Do stuff associated with this subscription’s suspension or block]
«ELSEIF _iCommand==7»

[Do stuff associated with this subscription’s activation or re-activation and send
email]
«ELSEIF _iCommand==8»

[Do stuff associated with this subscription’s suspension or block and send email]
«ELSEIF _iCommand==9»

[Do stuff when this subscription’s start and end dates are modified]
«ELSEIF _iCommand==10»

[Do stuff when this subscription’s consumption is updated]

«ENDIF»

At-Home Help, basic [Ordered] / :

Modify subscription At-Home Help, basic

Order number: 2010091501004

Start of subscription: [15/¢]-[9 |i$]- (2010 2|

End of subscription: [14] &]-[11]%]- (2010 2|

Parent subscription:

Continuation of subscription: [<HUHE> | ¢][Other
Mumber of free periods: [EI]

License insertion succeeded (MAYFIELDHERBERTIR413).
Subscription successfully updated.

Subscription Management || View subscriptions || Continue with this subscription |

Figure 2.16: This ordered subscription is activated, which triggers the cor-
responding event in AddOn:Events.phs.

The following code shows another example : it aims at updating ADDON_LICENSE
where subscription dates are modified.

63

Code 16 AddOn:Events.phs [part| : do this when subscription is activated

«VAR NEW _SubscriptionEndDate=0»

«VAR NEW _ClientName=""»

«INCLUDE
ossbo:0SSSubscriptionInfo.phs;_MerchantId=«_MerchantId»;_SubscriptionId=«_iOssIdentifier»»

«IF _iCommand==5 || _iCommand==7 »
«SQLSTATUS TRANSACTION BEGIN»
«SQLEXEC INT _Exists=SELECT COUNT(*) FROM ADDON_LICENSE WHERE
idSubscription=«_iOssIdentifier»»
«IF _Exists==0»
«VAR NEW _License=Qtocompare(_ClientName)+@itoa(@random(1000))>»
«SQL INSERT INTO ADDON_LICENSE
VALUES(«_iOssIdentifiery,«_SubscriptionEndDate»,’«_License»’)>»
<ENDIF»
«VAR NEW _Success=#TRANSACTIONSTATUS#>»
«SQLSTATUS TRANSACTION END»
«IF _Exists==0»
«IF _Success==1»
License insertion succeeded («_License»).
<ELSE>»
License insertion failed !
<ENDIF>»
<«ENDIF»
<ENDIF»

Code 17 AddOn:Events.phs [part] : do this when subscription’s dates are modified

«IF _iCommand==9 »

«SQL UPDATE ADDON_LICENSE SET iEndDate=«_iEndDate» WHERE
idSubscription=«_iOssIdentifier»»

«IF #SQLSTATUS#==1»

License entry successfully updated.
<ELSE»
License entry update failed !

<ENDIF»

«ENDIF»

64

The new end date for that subscription is recuperated through the _iEndDate variable
and success is shown on the final screen (Figi2.17)).

At-Home Help, basic [Activated] /)

End of subscription: [14/ ¢ |-[10/% |- (20102 |

oy]
‘ Licence entry successfully updated.
Subscription successfully updated,
Figure 2.17: This activated subscription has its end date modified, which
triggers the corresponding event in AddOn:Events.phs.

2.8 Advanced developing : a custom event control

Blue Chameleon is naturally equipped with event controls (see General Interface Han-
dling, Event Controls) that, when a user logs on, aim to represent the latest tickets, the
current /late projects, tasks...

Your add-on can also be featured on Blue Chameleon’s m In order to do this,
an oss- script (2.3.1)) called ossModuleHeadline.phs can be developed.

Code shows an example. The code for your headline must be embedded in the
ELSE. . .ENDIF environment, as the first part enables Blue Chameleon to propose your

event control to be added, through / Configure desktop / AddOn _Add |
After the mandatory IF... preamble, the example shows how custom user rights are
recuperated :

e first, a call to ossbo:0SSCustomScriptId.phs is done to recall the identifier of
the custom script for your add-on ; ’2001" must be used for the _CustomScript
parameter (it identifies it as 'menu script’) and _RegisterId is no other than the

signature of your add-on (2.3.1.1)), here 1003 ;

e the fetched _CustomScriptId then enables to recuperate the custom script user
rights, through a call to ossbo:0SSCustomUserRights.phs.

If needed, the custom rights related to the library can be recuperated as shown in
Code 121

In the rest, the c-date for the current day is evaluated and used to count how many
"licenses" end on this day ; if there actually are, through a SQLOUTPUT loop, a maximum

65

of four of them are then displayed as click-links to a AddOn:ViewAFinLicense.phs script
to which the following values are transmitted :

e the shop identifier «Sq1lDB», session identifier «xidy, aimed
AddOn:ViewAFinLicense.phs script ;

e merchant identifier «_MerchantIdy, custom script identifier «_CustomScriptIdy ;

e finally, the identifier for that particular subscription «idSubscriptiony.

At the end, another click-link redirects to a script AddOn:ViewAllFinLics.phs propos-
ing to view all finishing licenses of the day.

Code 18 ossModuleHeadline.phs : the dark-blue part is mandatory.

«IF @toi(_ossProcInfo)==1»
«VAR NEW azProcInfo = "AddOn"»
«RETURN azProcInfo»

<ELSE>»

«INCLUDE _CustomScriptId=ossbo:0SSCustomScriptId.phs;_CustomScript=2001;
_MerchantId=«_MerchantId»;_RegisterId=1003»

«VAR NEW _OwnerUserRights=""»

«VAR NEW _UserRights=""»

«INCLUDE ossbo:0SSCustomUserRights.phs; _MerchantId=«_MerchantIdy»;
_CustomScriptId=«_CustomScriptId»»

«VAR NEW _Today=@daytime()»
«SQLEXEC INT _Count=SELECT COUNT(*) FROM ADDON_LICENSE WHERE iEndDate=«_Today»»
«IF _Count==0»
No license ends today
<ELSE»
«_Count» license(s) end(s) today :

«SQLOUTPUT»
<a href=’/Scripts/sql.exe?SqlDB=«SqlDB»&xid=«xid»&Sql=Add0n:ViewAFinLicense.phs
&_MerchantId=«_MerchantId»&_CustomScriptId=«_CustomScriptId»
&_SubscriptionId=«idSubscription»’>
«azLicense»

«/SQLOUTPUT SELECT * FROM ADDON_LICENSE WHERE iEndDate=«_Today»;0;4»
<a href=’/Scripts/sql.exe?SqlDB=«SqlDB»&xid=«xid»&Sql=Add0n:ViewAllFinLics.phs
&_MerchantId=«_MerchantId»&_CustomScriptId=«_CustomScriptId»’>
View all

<ENDIF»

«ENDIF»

The final result is shown at Fig2.18

66

AddOn = E
2 licence(s) end(s) today :
SHELDOMHELEMEOO
PARKERKEMNS &4
View all

Figure 2.18: The custom headline resulting from Code

2.8.0.1 Content of a click-link

The following code shows how the linked script AddOn:ViewAFinLicense.phs could
be implemented : in fact, via an INCLUDE it uses again the AddOn:ViewLicense.phs one
, giving it the all parameters it needs (merchant, custom script and subscription
identifiers). Also, ossbo:Header.phs is used so as to give to this page the same
style as others.

Code 19 AddOn:ViewAFinLicense.phs : an example of a linked script from an event
control.

«INCLUDE ossbo:Header.phs;_Title="View finishing license";_Style="print";»
<H1>View finishing license</H1>

«INCLUDE AddOn:ViewLicense.phs;_MerchantId=«_MerchantIdy;
_CustomScriptId=«_CustomScriptIdy»;_Subscriptionld=«_SubscriptionId»»

<pP>

<input type="button" value="Send mail invite"
onClick="window.location.href=’/Scripts/sql.exe?SqlDB=«SqlDBy&xid=«xid»
4Sql=Add0n:InviteMailSend.phs&_MerchantId=«_MerchantId»
&_CustomScriptId=«_CustomScriptId»&_SubscriptionId=«idSubscription»’>

The output of this is featured at Figl2.19|

The button at the end redirects to a AddOn:InviteMailSend.phs script aimed at
sending an automated email to the client whose subscription is finished, inviting her /him
to start it again : this uses Blue Chameleon email features and is going to be explained
below.

67

[AddOn Event Control] SHELDONHELENS00 :
View finishing license

Subscription identifier : 29

Client : Sheldon Helen
End date : 17/9/2010
License : SHELDOMHELENSO0O

Send mail invite |

Figure 2.19: A finished "license", as accessed directly from the event control.

2.9 Advanced developing : using Blue Chameleon’s mail
gate

While Blue Chameleon offers a wide palette for confirmation, invoice-reminding,... emails,

you nonetheless might want a specific kind of email to be sent, as requested by your add-
on’s features.

For instance, in the add-on example that has been used throughout this chapter, one
might want, by a single click, to generate and send an email to a client whose particular
subscription has just ended in order to propose her/him to renew it. Code [20| then shows
how it could be done, through a AddOn:InviteMailSend.phs script.

First, calls to information scripts enable to :

e 0ssbo:0SSSubscriptionInfo.phs : get the name of the subscription article and
the order number related to this finished subscription ; client identifier too, under
the form Param=5 (for instance), which needs a string extract and cast to be done ;

e 0ssbo:0SSClientInfo.phs : get client’s email, title (Mr, Mrs,...) and last name ;

e ossbo:0SSMerchantInfo.phs : get your Merchant’s email and name.

Then, mail-related commands are called, first to declare sender as your merchant
email (MAIL FROM), recipient as the client email (MAIL TO) and a mail subject featuring
the name of the subscription article (MAIL SUBJECT).

Next, the mail’s text itself begins, between a OUTPUT MAIL.../QUTPUT environment,
in which OSL commands can be used. A MAIL SEND finally sends this text to the client’s
email and user is informed of the success of the sending.

68

Code 20 AddOn:InviteMailSend.phs This script sends a dedicated email to a single
client.

«*Subscription identifier _SubscriptionIld and _MerchantId must be inherited from
calling script !*»

«VAR NEW _ClientId=""»

«VAR NEW _SubscriptionName=""»

«VAR NEW _OrderNumber=""»

«INCLUDE
ossbo:0SSSubscriptionInfo.phs;_MerchantId=«_MerchantId»;_SubscriptionId=«_SubscriptionId»»

«LET _ClientId=@toi(@substr(_ClientId;6;-1))»

«VAR NEW _ClientEmail=""»
«VAR NEW _ClientTitle=""»
«VAR NEW _ClientName=""»
«INCLUDE ossbo:0SSClientInfo.phs;_MerchantId=«_MerchantIdy;_ClientId=«_ClientId»»

«VAR NEW _MerchantEmail=""»
«VAR NEW _MerchantName=""»
«INCLUDE ossbo:0SSMerchantInfo.phs;_MerchantId=«_MerchantId»»

«MAIL FROM «_MerchantEmail»»
«MAIL TO «_ClientEmails»y»
«MAIL SUBJECT About your «_SubscriptionName» subscription...»

«0UTPUT MAIL»
Dear «IF _ClientTitle<>""»«_ClientTitle»«ENDIFy» «_ClientNamey,

Your subscription «_SubscriptionName» (order Nr «_OrderNumber») has just expired
today !

If you are satisfied with our services, we invite you to renew it.
Kind Regards,

The «_MerchantNamey» Team
«/0UTPUT»

«MAIL SEND»

«IF #SQLSTATUS#==1»

Email successfully sent to «_ClientEmail»».
<ELSE>»

ERROR : Could NOT send mail to «_ClientEmailyy.
«ENDIF»

69

2.10 Communication add-on to add-on, and shop to
add-on : the oss- scripts

Blue Chameleon’s great force is that it allows one add-on to perform actions (such as
viewing/searching contents, adding an element,...) on an other add-on. Also, when some
actions are done in the Shop, some scripts belonging to add-ons, if defined, can be trig-
gered.

This all relies on the concept of objects in an explicit manner (in the case of add-on to
add-on) or implicit manner (shop to add-on), An object is defined by a triplet of values :

e theidentifier of the library if belongs to, as defined in the add-on’s ossModuleRegister.phs
script 2.3.1.1];
e an identifier to qualify the type of this object ;

e an identifier for the object itself.

As variables, these values are often called _LibraryId, _ObjectTypeId and _ObjectId.
Inside an add-on, this triplet fully identifies an object.

By principle, an add-on cannot directly act on the objects of an other add-on, but
instead calls scripts belonging to the Shop, which then serves as an intermediary ; it will
then call the relevant script aimed add-on (Fig.. The Shop, on the other hand, can
act on any add-on, if the corresponding scripts have been implemented for them. These
scripts have standardized names. A Shop’s script always starts by 0SS... ; an add-on
script by oss-

For instance, if add-on "Alpha" wants add-on "Beta" (registered as 1003) to display
a list of its objects Widget (which are for instance type 2), the following call is written
in add-on Alpha :

«INCLUDE
ossbo:08S0bjectSearch.phs; _MerchantId=«_MerchantId»; _0ObjectTypeld=2;_LibraryId=1003;
[Other parameters]»

The shop script’s 0SSObjectSearch. phs will then call add-on Beta’s ossObjectSearchObj. phs

script (which has to be developed) with several parameters amongst which the object type.

Several scripts of this kind exist ; their name all start with oss-. Once developed, they
have to be registered in order to be usable.

2.10.1 Registering oss- scripts

As any oss- script is written, a recheck of the library must be done, through /

Personalization / Personalization / Custom libraries /Library name _Pedister again |

Registered oss- scripts as well as objects available for a add-on (see below) can be
checked from the previous link (Figf2.21)).

70

Add-on "Alpha” Add-on "Beta”

Call to ossbo:OSS...
with parameters

SHOP An oss... scriptis
Steers to the right oss- script called

An add-on

: SHQP i AN 0ss... script is
A specific action is done cafiod

(modifying a user, etc...)

Figure 2.20: The principles of add-on to add-on and shop to add-on inter-
actions.

2.10.2 Recording objects inside an add-on

For objects to be handled inside an add-on, they have to be registered first through a
ossModuleInit.phs script where the types of the various objects are recorded through
a Shop’s script. Code [21] shows how ossModuleInit.phs is made.

Code 21 ossModulelInit.phs This records add-on Beta’s objects.

«LET _ObjectTypeName="Gizmo"»

«INCLUDE ossbo:0SSObjectTypeAdd.phs;_0ObjectType=1;_0bjectTypePrefs="00"»
«LET _ObjectTypeName="Widget"»

«INCLUDE ossbo:0SS0bjectTypeAdd.phs;_0ObjectType=2;_0bjectTypePrefs="00"»

There, the add-on’s objects Gizmo and Widget are thus respectively recorded with
the types 1 and 2.

Once done, the library must be recompiled and rechecked ([2.10.1)).

2.10.3 Integrating properties in an add-on

In the following example, the add-on in which to include properties has 1003’ as identifier

2.3.1.1).

71

Beta:

View custom library

Library: Beta
Signature: 1003

Label: Beta

Type: General
Registered object types:
1 Gizmao

2 Widget

Available scripts:

ossModulelnit I
ossModulelogin notimplemented
ossModulelogout notimplemeanted
osshModuleMessage notimplemented
ossModuleHeadline I
ossModuleObjectType notimplemented
osshModuleload notimplemeantead
osshModuleStat notimplemented
0ss0bjectStatusset notimplemented
0ss0bjectBillLabel notimplemented
oss0ObjectQuenyinfo notimplemented
ossObjectSearchOhj Of

0ss0bjectAdd notimplemented
oss0bjectModify notimplemented
oss0bjectDelete notimplemeanted
ossObjectview notimplemented

Figure 2.21: Objects and scripts that an add-on possesses.

2.10.3.1 Registering the properties to be used

For instance, we want to use two properties called ’Active’ for a client and 'Rank’ for a
salesman.

The add-on’s script ossModuleInit.phs ([2.10.2) must then contain :

«VAR NEW _Namel="Active;Actif;Aktiv"y»

«INCLUDE ossbo:0SS0bjectPropAdd.phs;_MerchantId=«idMerchanty»;
_Objectlibraryld=0;_0ObjectType=1; _PropLibraryId=1003;
_ProplId=1;_PropertyName=_Namel»

«VAR NEW _Name2="Rank;Rank;Rank"y

«INCLUDE ossbo:0SS0ObjectPropAdd.phs;_MerchantId=«idMerchanty;
_ObjectlLibraryld=0;_0ObjectType=14; _PropLibraryId=1003;
_PropId=2;_PropertyName=_Name2»

72

There :

e _ObjectLibraryId is the identifier of the library of the objects for which to handle
properties (here, 0 for Shop) ;

e _ObjectType is the type of the objects for which to handle properties (here, 1 for
Clients and 14 for Salesmen) ;

e _PropLibraryId is the identifier of the add-on, 1003 ;

e _PropId is the identifier of the property inside the add-on (here, 1 and 2) ;
Once done, the library must be recompiled and rechecked ([2.10.1]).

2.10.3.2 Creating the properties
Now, the properties themselves must be created inside the Property add-on ([2.22)).

;' Properties [Add

Property, Add

Property name : Ranlk
Type : System w
Object type : ossbo - Salesmen v

Propery name . MNone w

Data type : % w
s]

Figure 2.22: Creating the properties.

There, "Type : System’ must be chosen as well as the type of object ; the previously
registered property will then appear in the 'Property name’ listbox.

That property has then to be configured.

2.10.3.3 Using properties inside the add-on
2.10.3.3.1 Getting the list of properties

Inside add-on as identified by 1003, the following call allows to retrieve a string of regis-
tered properties along with their data :

«VAR NEW _PropObjectList=""»

«INCLUDE
_PropObjectList=Property:PropertySystem.phs#GetPropertyObjectList;
_PropLibraryId=1003»

73

The result string is ... ;<PropId>,<PropertyOwnId>,<LibId>,<0bjId>;... where
<Propld> is the property’s identifier inside add-on 1003 (i.e. 1, 2), <PropertyOwnId> is
the property’s identifier inside Property add-on (e.g. 27, 28) and <LibId>,<0bjId> are
the libraries and object types of the handled objects (i.e 0,1 and 0,14).

So in this example, we would get 1,27,0,1;2,28,0,14;.

The <PropertyOwnId> values are used to set and get property values, so that string
has to be obtained and exploited before doing anything.

2.10.3.3.2 Creating a property value

If for instance we want to set the value ’6’ for Property #2, for a (salesman) object
_SomeSalesmanId, first we get the _PropObjectList as shown above ; by cutting the
string along ’;” and using value "2’ as a locator we then extract the property’s own iden-
tifier, "28’.

The following is then done :

«INCLUDE Property:PropertySystem.phs#SetPropertyObjectList;
_Propertyld=28;_LibraryId=0;_0ObjectType=14;_0bjectId=«_SomeSalesmanldy;
_Valuel=6;_Value2=...;_Value2=...;_Mode=2»

This will insert ("_Mode=2") a property 'Rank’ with _Value1=6 for object (0,14, _SomeSalesmanId)

2.10.3.3.3 Removing a property value

To remove a property entry for an object identified by (0,14,_SomeSalesmanId), the
same call as above is made, but using _Mode=1.

2.10.3.3.4 Setting a property value

If we want to change a property value with a unique occurrence (and what’s more, even
if we don’t know whether it already exists), ‘remove’ and ’insert’ calls can be made
successively.

2.10.3.3.5 Fetching a property value

In order to retrieve the value of a property for an object identified by (0,14, _SomeSalesmanId),
the following call is made :

«VAR NEW_PropertyValueList=""»
«INCLUDE Property:PropertySystem.phs#GetPropertyObjectValuelist;
_Propertyld=28;_LibraryId=0;_0bjectType=14;_0bjectId=«_SomeSalesmanId»»

The result string _PropertyValueList has the following format : ...@<iOrder>;<iValuel>;
<iValue2>;<iValue3>@. ... There are several chunks separated by '@’ if there are mul-

tiple entries for that object and property. In that example, we would simply retrieve
'@6,0,0,0.

74

2.10.4 Object management-related scripts

These are add-on to add-on scripts.

Inside an add-on A, a shop script is called with parameters, thus calling another add-
on B’s oss- scripts with certain output parameters.

Action to perform in B | Shop script to be called in A Result script in B
Adding a new object ossbo:0SS_ObjectAdd.phs;. .. ossObjectAdd.phs
Deleting an object ossbo:08S_ObjectDelete.phs;... | ossObjectDelete.phs
Modifying an object ossbo:0SS_ObjectModify.phs;... | ossObjectModify.phs
Name of an object ossbo:085_0ObjectInfo.phs;... ossObjectQueryInfo.phs
Viewing an object ossbo:0SS_ObjectView.phs;. .. ossObjectView.phs

Input parameters for the ossbo:08SS. ..
id of add-on B), _ObjectTypeld (of the object to add, delete, modify,view, ...

calls are _MerchantId, _

LibraryId (register
) and,

except for ossbo:0SS_0ObjectAdd.phs; ..., _ObjectId (as deleting, modifying, getting
the name of or viewing a specific object require it to be fully defined by the triplet).

On add-on B’s side, these parameters are then retrieved as they are. The oss...
scripts in Add-on B should be developed so as to respectively perform the actions of
adding, deleting, modifying or viewing and object.

Code |22 shows how, for instance, a ossObjectAdd.phs script can be implemented in

add-on B.

Code 22 An example of template for a B:ossObjectAdd.phs script.

«IF Otoi(_ObjectId)==1 »

«*perform actions to add an new object of type 1...*>»

«ELSEIF @toi(_ObjectId)==2 »

«*perform actions to add an new object of type 2...%»

«ENDIF>»

It is to note that, should an add-on contain several objects, the «IF @toi(_ObjectId)==1»

. «<ELSEIF Qtoi(_ObjectId)==2» ...

2.10.4.1 Example :

«ENDIF» template must always be used.

link to view an object, featuring object’s name

The following line code (to put in the originating add-on A) outputs a link to the
ossObjectView.phs of an object of add-on B :

<a

href="/Scripts/sql.exe?xid=«xid»&SqlDB=«SqlDB»&_MerchantId=«_MerchantId»

75

&_Libraryld=«_idRef(ObjectLibrary»&_0bjectTypeld=«_idRefObjectType»&
_ObjectId=«_idRefObject»&Sql=o0ssbo:0SS_ObjectView.phs">«_0bjectName»

The _ObjectName had been recuperated thanks to a call to ossbo:0SS_0bjectInfo.phs:

[In A]

«VAR NEW _ObjectName=""»

«INCLUDE
ossbo:08S_0bjectInfo.phs;_MerchantId=«_MerchantId»&_LibraryId=«_idRefObjectLibrary»
&_ObjectTypeld=«_idRefObjectType»&_0ObjectId=«_idRefObject»»

[In B, : ossObjectQueryInfo/
«SQLEXEC STRING _ObjectName=SELECT azName FROM ... (use _0ObjectTypeld,
_ObjectlId as query parameters)»

2.10.5 Searching for an object
2.10.5.1 On all libraries’ objects

Some add-ons might handle objects from several libraries ; therefore, in order to provide
a choice of all available objects, a dedicated Shop script ossbo:0SS0ObjectSearch.phs
can be called in the following way in add-on A :

«INCLUDE
ossbo:0S8S0bjectSearch.phs;SqlReturn="A:newObject.phs"; _MerchantId=«_MerchantIdy;

«CustomScriptIld=«_CustomScriptId»»

This code produces the following output :

Objecttype: | Clients w| | Continue

Dracmaste

The drop-down menu shows all objects available in all libraries ; choosing a partic-
ular object then steers to the corresponding library’s ossObjectSearchQObj.phs script,
with, amongst other parameters, the following CGI variables :

e _SearchObjectTypeld, a string which value is <value of chosen library id>:<value
of chosen object type> ; type can be extracted through, for instance, «<VAR NEW
_TypeIld=Qitem(2; _SearchObjectTypeld;3) ;

e SqlReturn, which serves as to memorize which script of add-on A to come back to
when object in ossObjectSearchObj.phs is specifically chosen.

The ossObjectSearch0bj.phs must provide a form in which objects of type _TypeId
(extracted as shown above) are displayed, with a submit address equal to SqlReturn, the

chosen object’s triplet being well-defined CGI-wise.

76

2.10.5.2 On a specific library, or specific library’s object type

If on the other hand, the library on which to search objects is known, the call to

ossbo:0SS0bjectSearch.phs as shown above has to include a further parameter ; _LibraryId=.. ..

Furthermore, if the type of object must be forced, the following must be added :
.;_LibrarylId=...;_0ObjectTypeld=....

2.10.6 User-related oss- scripts

The ossUserConfig.phs and ossUserModify.phs have been respectively detailed at
[2.5.3.1] and [2.5.3.2] ; as a reminder, their function is to display an add-on’s custom user
rights on Shop’s Modify User Page and to record the modifying thereof.

Other add-on-oriented scripts can be launched when users are managed.

Event in the shop | Script to implement in add-on A | Parameter to use
A new user is added | ossUserAdd.phs _UserId
A wuser is deleted ossUserDelete.phs _UserId

For instance, if add-on A is equipped with an ossUserAdd.phs script, this very script
will be triggered each time that a new user is added in the shop. This can be useful
for instance if add-on A has a table that requires users to be recorded therein : as a
new user is created, A:ossUserAdd.phs will be launched, executing for instance INSERT
INTO A_TABLE_USERS VALUES («%:d;_UserIds, ...), _Userld being the shop’s inher-
ited variable identifying the new user.

When a user is removed from the shop, an action of deleting a user from some ta-
ble of add-on A can also be triggered in a similar manner thanks to an implemented
ossUserDelete.phs script.

2.10.7 Article-related oss- scripts

If an article has a defined back-office library (as set on the Add, Modify Article Page),
the following scripts can be developed in the corresponding library each time a specific
action has been done on this article, which is identified as _ArticleId in these scripts :

Action Launched script in back-office library
Article _Articleld has been added ossArticleAdd.phs

Article _Articleld is viewed ossArticleView.phs

Article _ArticlelId’s Modify page is displayed | ossArticleEdit.phs

Article _ArticleId has been modified ossArticleModify.phs

Article _ArticlelId has been deleted ossArticleDelete.phs

77

ossArticleView.phs and ossArticleEdit.phs are used to display view /modify add-
on-related information or attributes on the View/Modify Article pages ; therefore, those
scripts must contain the following template :

<TR>
<TD>
Some add-on article attribute...
</TD>
</TR>
<TR>
<TD>
Value of that attribute, fetched using _Articleld, in a View
or Modify way
</TD>
</TR>

Currently, ossArticleEdit.phs is only used at the Modify Subscription Page (using
an _EditMode variable equal to 6) and must follow this template :

«IF @exists("_FirstMod")==1»
«IF _EditMode==6»
(template with TRs, TDs)
<ENDIF>»
<ENDIF>»

2.10.8 Client-related oss- script

A ossClientAction.phs script can be developed to perform actions in add-on A’s tables
whenever a client is managed in the shop. Recuperated parameters that are to be used to
develop this script are _ClientId (identifier of the client that is acted on) and _Action,
describing what is currently/has been done on the client :

Action Value of _Action
Client _ClientId has been added

Client _ClientId has been modified

Client _ClientId has been deleted

Client _ClientId’s Modify Page is displayed

Client _ClientId is checked for reference (before deletion)
Client _ClientId’s Management Page is displayed

| | O W| DN

Generally speaking ossClientAction.phs has to follow this template (if add-on re-
quires those actions to be done), using _ClientId to identify the client :

«IF _Action==1»

(for example insert this new client in a table)
«ELSEIF _Action==2»

(update some stuff related to that client)

78

<ELSEIF _Action==3»
(delete that client from some table)
<ELSEIF _Action==b»
(content that will be seen on the Modify Client Page)
<ELSEIF _Action==6»
(check if client is referenced some table of the add-on ; RETURN
1 if he isn’t, RETURN O otherwise)
<ELSEIF _Action==7»
(content that will be seen on the Client Management Page)
<ENDIF>»

Values of 5 and 7 allow the add-on to output on the Modify/View Client pages
custom content, similarly as the ossArticleEdit.phs and ossArticleView.phs scripts
as used for articles [2.10.7] Their template must then use TRs and TDs.

2.10.9 External system-related scripts

The following scripts are launched inside any add-on which has them, they will be trig-
gered when performing actions in the external system and thus will allow to export data
pertaining to add-on A similarly as for invoices, payments... The available variable is the
identifier of the export _ExportId :

Action Launched script
Count add-on’s elements to be exported ossExportCount . phs
Export add-on’s elements to external system | ossExportExternal.phs
Export in add-on is validated ossExportValidate.phs
Export in add-on is canceled ossExportCancel.phs

2.10.9.1 Examples of implementation

If for instance, in add-on’s A, table PAYMENT_DATA contains information (references, post-
ing dates, debit/credit amounts) that may be exported to the external system, the oss-
scripts as mentioned are to be used.

2.10.9.1.1 ossExportCount.phs

First, as in the shop, elements to be exported are first counted, this shall also be done
for add-on A’s data. The following code offers an example of how ossExportCount.phs
could be implemented : along certain conditions (for instance, of dates), relevant data in
PAYMENT_DATA is counted and result must be RETURN’ed to be used by the Shop.

«VAR NEW _Count=0»
«SQL SELECT COUNT(*) FROM PAYMENT_DATA WHERE <conditions>»
«RETURN _County

79

2.10.9.1.2 ossExportExternal.phs
Code [23] shows how the template with which this script should be implemented.

There, it can be noted that, for transaction to be exported, some Shop scripts related
to exports must be called :

e ossbo:ProcExport.phs#ExportTransBegin : start the export of the transaction.
Mandatory parameters : _Reference of the transaction posting, value date vari-
ables for the transaction (_PostingDay, _PostingMonth, PostingYear, _ValueDay,
_ValueMonth, _ValueYear) and an identifier for the user who does it (_IdUser) ;

e ossbo:ProcExport.phs#ExportPostingTag : write each movement of the transac-
tion. Mandatory parameters : a transaction _Reference, an account _IdAccount,

_Credit and _Debit values and a _Label ;

e ossbo:ProcExport.phs#ExportTransEnd : close the transaction. No parameter.

Therefore, the data from the relevant table in the add-on might be extracted so that
it respects this framework.

Code 23 An example of template for a ossExportExternal.phs script.

«*Initialize a few date variables before...*»
«SQLOUTPUT»
«INCLUDE
ossbo:ProcExport.phs#ExportTransBegin; _Reference="PMA«azRefTransac»";
_PostingDay=«_D»;_PostingMonth=«_M»;_PostingYear=«_Y»;
_ValueDay=«_D»;_ValueMonth=«_M»; _ValueYear=«_Y»;
_IdUser=«#SQLUSERID#y»»
«SQLOUTPUT»
«INCLUDE
ossbo:ProcExport.phs#ExportPostingTag; _Reference="PMA«azRefTransac»";
_IdAccount=«idAccounty;_Credit=«mCredy;_Debit=«mDeby;_Label=«azLabel»»
«/SQLOUTPUT SELECT(*) FROM PAYMENT_DATA WHERE idTransac=«idTransac»»
«INCLUDE ossbo:ProcExport.phs#ExportTransEnd»
«/SQLOUTPUT SELECT idTransac, azRefTransac, <etc.> FROM PAYMENT_DATA
<conditions>»

«IF #SQLSTATUS#==0 AND Q@toi(_SqlStatus)==0»
«SYSTEM ECHOLOG EXPORT FAILED IN A !y
<ELSE»
«SQL UPDATE PAYMENT_DATA SET idExport=<%d;_ExportId» WHERE
<conditions>»
<ENDIF>»

80

At the end, the success of the export is tested ; if they were done successfully, it
is possible to update the relevant table of the add-on with the identifier of the export,
_ExportlId.

2.10.9.1.3 ossExportValidate.phs

As a value of 1 is expected for a Shop export to be validated, this script simply consists
in

RETURN 1

2.10.9.1.4 ossExportCancel.phs

This script, as launched when the export is canceled, may consist in using _ExportId to
identify the export, and act on add-on A’s related table as a consequence, for instance
setting there its value back to 0 :

«SQL UPDATE PAYMENT_DATA SET idExport=0 WHERE idExport=«’d;_ExportId»»
«IF #SQLSTATUS#==0»
«SYSTEM ECHOLOG EXPORT CANCELLATION FAILED IN A !»
<«RETURN O»
<ELSE»
«RETURN 1»
<ENDIF>»

Whether this operation was successfully done or not, a value of 1 or 0 is returned to
the Shop.

2.10.10 Other shop-related oss- scripts

The following table sums up those non-object-specific, mostly related to events such as
login, logout, etc.

Script in add-on A Function

ossModuleRegister.phs | Identifies the add-on (mandatory, [2.3.1.1)

ossModuleInit.phs Registers the add-on’s objects (]2.10.2[)

ossModuleLogin.phs Will be launched each time a user logs in

ossModuleLogout .phs Will be launched each time a user logs out

ossModuleHeadline.phs | Outputs an event control on user’s desktop

ossModuleLoad.phs Is triggered when main page’s menu is loaded

ossModuleMessage.phs | Can be used to display a message on main page
(old interface, obsolete)

ossModuleObjectType Returns the list of object types (obsolete)

81

	A guide to developing your Blue Chameleon Add-On
	The structure of a Blue Chameleon Add-on
	How .phs pages are interpreted and displayed

	Basics of add-on developing : how it is integrated
	Compiling your .phs files
	Uploading your library and files
	Registering your add-on

	Basics of add-on developing : how to organize your .phs scripts
	"oss-" scripts : the basics
	Headers and footers
	Languages

	Variables, forms, scripts
	CGI variables
	Accessing names and values of CGI variables
	CGI variables and HTML forms
	Conserving variables from one script to another
	CGI variables and javascript functions
	Incorporating other files

	Setting aimed user rights for the add-on
	Getting the current (Menu Script) user rights inside a script
	Fine-tuning the access to add-on's features
	Making custom library user rights for your add-on

	Importing information on Shop data
	Importing user and user group information
	Information on Merchant
	Information on clients
	Information on subscriptions
	Information on orders
	Information on invoices

	Advanced developing : custom scripts
	Adding a custom script
	Subscription-related custom scripts

	Advanced developing : a custom event control
	Advanced developing : using Blue Chameleon's mail gate
	Communication add-on to add-on, and shop to add-on : the oss- scripts
	Registering oss- scripts
	Recording objects inside an add-on
	Integrating properties in an add-on
	Object management-related scripts
	Searching for an object
	User-related oss- scripts
	Article-related oss- scripts
	Client-related oss- script
	External system-related scripts
	Other shop-related oss- scripts

